K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

27 tháng 9 2017

a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)

Trừ 2 vế lại ta được 

\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Rightarrow x=\frac{1}{2}\)

18 tháng 1 2020

b)Đặt $S=x+y,P=xy$ thì được:

\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)

18 tháng 1 2020

\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)

16 tháng 8 2017

HELP Toshiro Kiyoshi, Nguyễn Thanh Hằng, Nguyễn Huy Tú, Phương An, Hồng Phúc Nguyễn,....

16 tháng 8 2017

Ta có:

\(\left\{{}\begin{matrix}P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2+2\left(ab+bc+ac\right)\\Q=\left(a+b+c+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\\Q=a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\end{matrix}\right.\)

\(\Rightarrow P-Q=\left(a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\right)\left(a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\right)\)

\(\Rightarrow P-Q=a^2+b^2+c^2+a+b+c+3+2ab+2bc+2ac-a^2-b^2-c^2-1-2ab-2ac-2a-2bc-2b-2c\)

\(\Rightarrow P-Q=-a-b-c+2=-\left(a+b+c-2\right)\)

Vậy..............

Chúc bạn học tốt!!!

27 tháng 5 2019

Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...

21 tháng 6 2019

ok pn. Số zalo của mk là: 037 678 1096. Cảm ơn bạn nhiều

17 tháng 12 2018

Tại sao lại x2 + 2xy + y2 = 4??? Theo đề bài thì (x + y)2 = 2 mà?

17 tháng 12 2018

\(x^2+2xy+y^2=4\)

\(\Leftrightarrow x^2+y^2=4-2xy=4-2=2\)

\(\Leftrightarrow x^2+y^2=2xy\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thay vào pt suy ra \(x=y=1\)