Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)
\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)
a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)
Trừ 2 vế lại ta được
\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)
\(\Rightarrow x=\frac{1}{2}\)
b)Đặt $S=x+y,P=xy$ thì được:
\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)
\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)
HELP Toshiro Kiyoshi, Nguyễn Thanh Hằng, Nguyễn Huy Tú, Phương An, Hồng Phúc Nguyễn,....
Ta có:
\(\left\{{}\begin{matrix}P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2+2\left(ab+bc+ac\right)\\Q=\left(a+b+c+1\right)^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\\Q=a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\end{matrix}\right.\)
\(\Rightarrow P-Q=\left(a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\right)\left(a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\right)\)
\(\Rightarrow P-Q=a^2+b^2+c^2+a+b+c+3+2ab+2bc+2ac-a^2-b^2-c^2-1-2ab-2ac-2a-2bc-2b-2c\)
\(\Rightarrow P-Q=-a-b-c+2=-\left(a+b+c-2\right)\)
Vậy..............
Chúc bạn học tốt!!!
Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...
Tại sao lại x2 + 2xy + y2 = 4??? Theo đề bài thì (x + y)2 = 2 mà?
\(x^2+2xy+y^2=4\)
\(\Leftrightarrow x^2+y^2=4-2xy=4-2=2\)
\(\Leftrightarrow x^2+y^2=2xy\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
Thay vào pt suy ra \(x=y=1\)