Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bất đẳng thức giá trị tuyệt đối:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Dấu \(=\)khi \(AB\ge0\).
d) \(\left|x+1\right|+\left|x+2\right|+\left|2x-3\right|\)
\(\ge\left|x+1+x+2\right|+\left|2x-3\right|\)
\(=\left|2x+3\right|+\left|3-2x\right|\)
\(\ge\left|2x+3+3-2x\right|=6\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)\ge0\\\left(2x+3\right)\left(3-2x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le\frac{3}{2}\).
e) \(\left|x+1\right|+\left|x+2\right|+\left|x-3\right|+\left|x-5\right|\)
\(=\left(\left|x+1\right|+\left|3-x\right|\right)+\left(\left|x+2\right|+\left|5-x\right|\right)\)
\(\ge\left|x+1+3-x\right|+\left|x+2+5-x\right|\)
\(=4+7=11\)
Dấu \(=\)khi \(\hept{\begin{cases}\left(x+1\right)\left(3-x\right)\ge0\\\left(x+2\right)\left(5-x\right)\ge0\end{cases}}\Leftrightarrow-1\le x\le3\).
Do đó phương trình đã cho vô nghiệm.
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
a)\(\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{7}\right)^7\)
\(x=\left(\frac{3}{7}\right)^7\div\left(\frac{3}{7}\right)^5\)
\(x=\left(\frac{3}{7}\right)^2\)
\(x=\frac{9}{49}\)
Vậy...
b)\(\left(-\frac{1}{3}\right)^3.x=\left(\frac{1}{3}\right)^4\)
\(\left(-\frac{1}{3}\right)^3.x=\left(-\frac{1}{3}\right)^4\)
\(x=\left(-\frac{1}{3}\right)^4\div\left(\frac{-1}{3}\right)^3\)
\(x=-\frac{1}{3}\)
Vậy...
c)\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
=>\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
Vậy...
d)\(\left(x+\frac{1}{4}\right)^4=\left(\frac{2}{3}\right)^4\)
=>\(x+\frac{1}{4}=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{1}{4}\)
\(x=\frac{5}{12}\)
Vậy...
Phù, mãi mới xong, tk cho mk nha bn
Trong tích có thừa số 9 - 3^2 = 9 - 9 = 0
Vậy (7 - 3^0).(8 - 3^1).(9 - 3^2)...(107 - 3^100) = 0
ket qua bang 0