Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2-\left(\frac{1}{4}\right)^2=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{2}{3}+\frac{1}{4}\right)\left(\frac{1}{x}-\frac{2}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{5}{12}\right)\left(\frac{1}{x}-\frac{11}{12}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}-\frac{5}{12}=0\\\frac{1}{x}-\frac{11}{12}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{5}{12}\\\frac{1}{x}=\frac{11}{12}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{12}{11}\\x=\frac{12}{5}\end{cases}}\)
Vậy....
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}\)
Bài 2
a. \(-1\frac{2}{3}-|2x-1|:\frac{3}{5}=-2\)
\(|2x-1|:\frac{3}{5}=\frac{5}{3}-2\)
\(|2x-1|:\frac{3}{5}=-\frac{1}{3}\)
\(|2x-1|=-\frac{1}{5}\)
Vì giá trị tuyệt đối luôn \(\ge0\)với mọi x
mà \(-\frac{1}{5}< 0\)
=> \(x\in\varnothing\)
-72(15-49) + 15 (-56 + 72)
= -72 . -34 + 15 . 16
= 2488 + 240
= 2728
-72(15-49)+15(-56+72) =-72.(-34)+15.16 =2448+240 = 2688 làm luôn :16.17.1.15625.1 =272.15625 =4250000
cho 3 k
\(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{10^2}\right)\)
=> \(\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\)\(...\left(1-\frac{1}{10}\right)\cdot\left(1+\frac{1}{10}\right)\)
=> \(\left(1-\frac{1}{2}\right)\cdot\frac{3}{2}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\cdot\cdot\frac{9}{10}\cdot\frac{10}{11}\)
=> \(\frac{1}{2}\cdot\frac{3\cdot2\cdot4\cdot\cdot\cdot9\cdot10}{2\cdot3\cdot3\cdot\cdot\cdot10\cdot11}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
Chúc bn học tốt !
cho mk 3 k nha bn
thanks nhìu
bài này mk ko copy, ko chép mạng, tự nghĩ mất 6 phút .
có công thức rùi nha !
chúc bn học tốt
\(A=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}....\frac{100^2-1}{100^2}\)
\(A=\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{99.101}{100^2}\)
\(A=\frac{1.3.2.4...99.100}{2.2.3.3...100.100}\)
\(A=\frac{1.2...99}{2.3....100}.\frac{3.4...101}{2.3...100}\)
\(A=\frac{1}{100}.\frac{101}{2}\)
\(A=\frac{101}{200}\)
a,\(\left(x-3\right).\left(2y+1\right)=7\)
Vì \(x;y\inℤ=>x-3;2y+1\inℤ\)
\(=>x-3;2y+1\inƯ\left(7\right)\)
Nên ta có bảng sau
x-3 | 1 | 7 | -7 | -1 |
2y+1 | 7 | 1 | -1 | -7 |
x | 4 | 10 | -4 | 2 |
y | 3 | 0 | -1 | -4 |
Vậy ...
b,\(A=-126-\left(4^2-5\right)^2+870:29\)
\(=-126-\left(16-5\right)^2+30\)
\(=-126-11^2+30\)
\(=-247+30=-217\)
Bài 1:\(A=1-\frac{1}{2}+1-\frac{1}{6}+.......+1-\frac{1}{9900}\)
\(=1-\frac{1}{1.2}+1-\frac{1}{2.3}+........+1-\frac{1}{99.100}\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-\frac{99}{100}=\frac{9801}{100}\)
Bài 2:\(A=\frac{1}{299}.\left(\frac{299}{1.300}+\frac{299}{2.301}+.........+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}.\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+.........+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left(1+\frac{1}{2}+......+\frac{1}{101}-\frac{1}{300}-\frac{1}{301}-.......-\frac{1}{400}\right)\)
\(=\frac{1}{299}.\left[\left(1+\frac{1}{2}+.......+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+......+\frac{1}{400}\right)\right]\)(đpcm)
1/
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{9900}\right)\)
\(=\left(1+1+...+1\right)\left(50so\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=50-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=50-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=50-\left(1-\frac{1}{100}\right)=49+\frac{1}{100}=\frac{4901}{100}\)
2/
\(=\frac{1}{299}\left(\frac{299}{1.300}+\frac{299}{2.301}+...+\frac{299}{101.400}\right)\)
\(=\frac{1}{299}\left(1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+...+\frac{1}{101}-\frac{1}{400}\right)\)
\(=\frac{1}{299}\left[\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\right]\)
tích này bằng mấy hả bạn
đề bài là gì vậy bạn
tìm x hay tính giá trị