Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{100+\dfrac{99}{2}+\dfrac{98}{3}+...+\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\left(\dfrac{99}{2}+1\right)+\left(\dfrac{98}{3}+1\right)+...+\left(\dfrac{1}{100}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{\dfrac{101}{2}+\dfrac{101}{3}+...+\dfrac{101}{100}+\dfrac{101}{101}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=\dfrac{101\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}+\dfrac{1}{101}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}}-2\)
\(=101-2\)
\(=99\)
Bài 1:Với mọi n∈N*,ta có:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó :
A=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
Bài 2:
\(A=\left(3\sqrt{2}-3+4\sqrt{2}+2-4-2\sqrt{2}\right)\cdot\left(2\sqrt{2}+2\right)\)
\(=\left(5\sqrt{2}-5\right)\left(2\sqrt{2}+2\right)\)
=10
Ta có:
\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\dfrac{99+1}{1\cdot99}+\dfrac{97+3}{3\cdot97}+...+\dfrac{1+99}{99\cdot1}}{100}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{99}+1\right)}{100}}\)
\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}}=\dfrac{1}{\dfrac{2}{100}}=\dfrac{100}{2}=50\)
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+...+\dfrac{1}{99}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{100}{100}+\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)
\(A=\dfrac{\left(1+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)........\left(51^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right).......\left(52^4+\dfrac{1}{4}\right)}\)
\(=\dfrac{\left(1+1+\dfrac{1}{2}\right)\left(1-1+\dfrac{1}{2}\right)........\left(11^2-11+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)........\left(12^2-12+\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{1}{2}\left(1.2+\dfrac{1}{2}\right)\left(2.3+\dfrac{1}{2}\right)........\left(11.12+\dfrac{1}{2}\right)}{\left(2.3+\dfrac{1}{2}\right)\left(3.4+\dfrac{1}{2}\right)......\left(12.13+\dfrac{1}{2}\right)}\)
\(=\dfrac{\dfrac{1}{2}}{12.13+\dfrac{1}{2}}\)
\(=\dfrac{1}{313}\)