Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
Ta có: 1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)
=> \(1=\frac{1x2}{2};\frac{1}{2}\left(1+2\right)=\frac{2x3}{2x2};\frac{1}{3}\left(1+2+3\right)=\frac{3x4}{2x3};\)\(;\frac{1}{4}\left(1+2+3+4\right)=\frac{4x5}{2x4};...;\frac{1}{20}\left(1+2+3+...+20\right)=\frac{20x21}{2x20}\)
=> \(B=\frac{1x2}{2}+\frac{2x3}{2x2}+\frac{3x4}{2x3}+\frac{4x5}{2x4}+...+\frac{20x21}{2x20}\)
=> \(B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
=> \(B=\frac{1}{2}\left(2+3+4+5+...+21\right)=\frac{1}{2}\left(\frac{21.22}{2}-1\right)\)
=> \(B=\frac{230}{2}=115\)
Đáp số: B=115
a)|x+0,573|=2
=>x+0,573=2 hoặc -2
Xét x+0,573=2
=>x=1,427
Xét x+0,573=-2
=>x=-2,573
a) | x + 0,573 | = 2
\(\Rightarrow\)x + 0,573 = 2 hoặc x + 0,573 = -2
+) x + 0,573 = 2\(\Rightarrow\)x = 1,427
+) x + 0,573 = -2\(\Rightarrow\)x = -2,573
Vậy x = 1,427 hoặc -2,573
b) \(\left|x+\frac{1}{3}\right|-4=-1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=3\)
\(\Rightarrow x+\frac{1}{3}=3\) hoặc \(x+\frac{1}{3}=-3\)
+) \(x+\frac{1}{3}=3\Rightarrow x=\frac{8}{3}\)
+) \(x+\frac{1}{3}=-3\Rightarrow x=\frac{-10}{3}\)
Vậy \(x=\frac{8}{3}\) hoặc \(x=\frac{-10}{3}\)
Các phần khác làm tương tự nhé bạn
\(\Rightarrow B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+....+\frac{1}{20}.\frac{\left(1+20\right).20}{2}\)
\(\Rightarrow B=1+\frac{1}{2}.\frac{3.2}{2}+\frac{1}{3}.\frac{4.3}{2}+...+\frac{1}{20}.\frac{21.20}{2}\)
\(\Rightarrow B=1+\frac{1}{2}.3+\frac{4}{2}+...+\frac{21}{2}\)
\(\Rightarrow B=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{21}{2}\)
\(\Rightarrow B=\frac{2+3+4+...+21}{2}=...\)
Good Clever
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+...+\frac{1}{20}\cdot\frac{20\cdot21}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{1+2+3+....+21}{2}-\frac{1}{2}\)
\(=\frac{21\cdot22}{2}\cdot\frac{1}{2}-\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{21\cdot22}{2}-1\right)\)
\(=230\cdot\frac{1}{2}\)
Bí
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{20}.\left(1+...+20\right).\)
\(=1+\frac{3}{2}+\frac{6}{3}+\frac{10}{4}+...+\frac{210}{20}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=\frac{230}{2}=115\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)