Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
Tập xác định: D = (0; + ∞ )
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
Do đó, hàm số đã cho nghịch biến trên tập xác định.
+ Giới hạn:
⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số
y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
a) Hàm số y=
Tập xác định: (0; +∞).
Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.
Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.
Bảng biến thiên
Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).
b) y= .
Tập xác định: ℝ \{0}.
Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).
Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.
Bảng biến thiên
Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.
a) Tập xác định: R\{0}
Hàm số đã cho là hàm số lẻ.
Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.
Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.
Bảng biến thiên:
Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.
b) Tập xác định: D = (0; +∞)
Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên:
c) Tập xác định: D = (0; + ∞ )
y′ > 0, ∀ x ∈ D
Vì y′ > 0, ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị không có tiệm cận.
Bảng biến thiên
Đồ thị
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
Tập xác định: D = (0; + ∞ )
Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.
Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.
Bảng biến thiên: