Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em hãy tính kết quả của phép tính sau :
2007/2008 - 2006/2007 = ?
A. 1/2007 x 2008
B. 1/2007
C. 1/ 2008
D. 2/2007 x 2008
Đáp án : A . \(\frac{1}{2007\cdot2008}\)
ta thấy: 2008/2006>1
=>2006/2007+2007/2008+2008/2006>1
Vậy 2006/2007+2007/2008+2008/2006>1
***nhé
\(A=\frac{2006+2007}{2006.2007}=\frac{2006}{2006.2007}+\frac{2007}{2006.2007}=\frac{1}{2007}+\frac{1}{2006}\)
\(B=\frac{2007+2008}{2007.2008}=\frac{2007}{2007.2008}+\frac{2008}{2007.2008}=\frac{1}{2008}+\frac{1}{2007}\)
Vì \(\frac{1}{2007}+\frac{1}{2006}>\frac{1}{2008}+\frac{1}{2007}\)
=> \(A>B\)
A=2008+2007/2+2006/3+2005/4+...+2/2007+1/2008
1/2+1/3+1/4+1/5+...+1/2007+1/2008
=(1+2007/2)+(1+2006/3)+(1+2005/4)+...+(1+2/2007)+(1+1/2008)
1/2+1/3+1/4+...+1/2008
=2009(1/2+1/3+1/4+...+1/2008)
1/2+1/3+1/4+..+1/2008
=2009
Gọi a là tử số, b là mẫu số của phân số A
a = \(\frac{2008}{1}\)+ \(\frac{2007}{2}\)+ \(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)
Dãy số a có (2008 - 1) : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)
b = \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)
Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)
A = [ ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)+ \(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)+ \(\frac{1}{2008}\)) : (\(\frac{1}{2}\)+ \(\frac{1}{2009}\))
A = \(\frac{\text{2008 x2008 + 1}}{2008}\)x \(\frac{2x2009+2}{2x2009}\)
A = 2008
Chọn A