K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

lấy máy tính fx-570ES plus ra mà bấm

2 tháng 6 2016

Thế thỳ cần j phải đăng lên dây hỏi

 

20 tháng 6 2016

\(\int\frac{1+sin2x+cos2x}{sinx+cosx}dx\)

\(=\int\frac{sin^2x+cos^2x+2sinxcosx+cos^2x-sin^2x}{sinx+cosx}dx\)

\(=\int\frac{\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}dx\)

\(=\int\left(sinx+cosx+cosx-sinx\right)dx=\int2cosxdx=2sinx\)

20 tháng 6 2016

bạn tự thay cận vào nhé

 

NV
6 tháng 10 2021

\(=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{2cos^2x-1-3\left(1-cos^2x\right)}{cos^2x}dx=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{5cos^2x-4}{cos^2x}dx\)

\(=\int\limits^{\dfrac{\pi}{4}}_0\left(5-\dfrac{4}{cos^2x}\right)dx=\left(5x-4tanx\right)|^{\dfrac{\pi}{4}}_0=...\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 1)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{-1}{x}\end{matrix}\right.\)

\(\int \left ( \frac{\ln}{x} \right )^2dx=\frac{-\ln^2x}{x}+2\int \frac{\ln x}{x^2}dx\)

Đặt \(\left\{\begin{matrix} t=\ln x\\ dk=\frac{1}{x^2}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dt=\frac{1}{x}dx\\ k=-\frac{1}{x}\end{matrix}\right.\Rightarrow \int \frac{\ln x}{x^2}dx=-\frac{\ln x}{x}+\int \frac{1}{x^2}dx=\frac{-\ln x}{x}-\frac{1}{x}\)

\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|\left(\frac{-\ln^2 x}{x}-\frac{2\ln x}{x}-\frac{2}{x}\right)=2-\frac{5}{e}\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

\(I=\int ^{\frac{\pi}{4}}_{0}\frac{x}{1+\cos 2x}dx=\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{x}{\cos^2x}dx\)

Đặt \(\left\{\begin{matrix} u=x\\ dv=\frac{dx}{\cos^2x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\tan x\end{matrix}\right.\Rightarrow I=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{x\tan x}{2}-\frac{1}{2}\int^{\frac{\pi}{4}}_{0} \tan xdx\)

\(=\frac{\pi}{8}+\frac{1}{2}\int ^{\frac{\pi}{4}}_{0}\frac{d(\cos x)}{\cos x}=\frac{\pi}{8}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{\ln |\cos x|}{2}=\frac{\pi}{8}+\frac{\ln\frac{\sqrt{2}}{2}}{2}\)

17 tháng 1 2021

Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ 

Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)

x  -2  -1  1  2  
\(x^2-1\) 00 

\(\left(-2;-1\right):+\)

\(\left(-1;1\right):-\)

\(\left(1;2\right):+\)

\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)

\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)

\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)

Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính 

17 tháng 1 2021

2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)

\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)

\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2018

Lời giải:

Ta có:

\(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin x}{(\sin x+\cos x)^3}dx+\int ^{\frac{\pi}{4}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx\)

\(=A+B\)

Xét riêng rẽ:

\(A=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{\sin^3 x}{(\sin x+\cos x)^3}.\frac{dx}{\sin ^2x}=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{\left(\frac{\sin x+\cos x}{\sin x}\right)^3}d(-\cot x)\)

\(=\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{1}{(\cot x+1)^3}d(-\cot x)=-\int ^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{d(\cot x+1)}{(\cot x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{2}\\ \frac{\pi}{4}\end{matrix}\right|\frac{1}{2(\cot x+1)^2}=\frac{3}{8}\)

\(B=\int ^{\frac{\pi}{4}}_{0}\frac{\sin x+\cos x-\cos x}{(\sin x+\cos x)^3}dx\)\(=\int ^{\frac{\pi}{4}}_{0}\frac{ 1}{(\sin x+\cos x)^2}dx-\int ^{\frac{\pi}{4}}_{0}\frac{\cos x}{(\sin x+\cos x)^3}dx\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos x}\right)^2}.\frac{dx}{\cos ^2x}-\int ^{\frac{\pi}{4}}_{0}\frac{1}{\left(\frac{\sin x+\cos x}{\cos^3 x}\right)^3}.\frac{dx}{\cos ^2x}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x)}{(\tan x+1)^3}\)

\(=\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^2}-\int ^{\frac{\pi}{4}}_{0}\frac{d(\tan x+1)}{(\tan x+1)^3}\)

\(=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{-1}{\tan x+1}+\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\frac{1}{2(\tan x+1)^2}=\frac{1}{8}\)

Do đó: \(\int ^{\frac{\pi}{2}}_{0}\frac{\sin x}{(\sin x+\cos x)^3}dx=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}\)

Sở dĩ phải chia tích phân thành tổng nhỏ như vậy là do khi ta thực hiện chia sin x xuống dưới mẫu thì hàm số không liên tục trong đoạn \([\frac{\pi}{2}; 0]\)

2 tháng 4 2018

Dạ em cảm ơn ạ!

AH
Akai Haruma
Giáo viên
20 tháng 11 2017

Câu a)

\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)

Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)

Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)

Vậy :

\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)

\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)

Câu b)

\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)

\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)

Do đó:

\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2017

Câu c)

\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)

\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)

\(=\frac{x^2}{2}+c+\ln ^2x\)

\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)

Câu d)

\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)

\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)

\(=1+\ln 3\)