Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(H\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}H\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\H\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}H\left(-1\right)=a-b+c\\H\left(-2\right)=4a-2b+c\end{matrix}\right.\)
\(\Rightarrow H\left(-1\right)+H\left(-2\right)\) \(=\left(a-b+c\right)+\left(4a-2b+c\right)\)
\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)
\(=5a-3b+2c=0\Rightarrow H\left(-1\right)=-H\left(-2\right)\)
\(\Rightarrow H\left(-1\right).H\left(-2\right)=\left[-H\left(-2\right)\right].H\left(-2\right)\)
\(=-H^2\left(-2\right)\)
Mà \(H^2\left(-2\right)\ge0\Leftrightarrow-H^2\left(-2\right)\le0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\) (Đpcm)
bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng
ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng
ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)
mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500
b) ta có : toh = xoz (đối đỉnh)
mà toh = 400 \(\Rightarrow\) xoz = 400
\(\Rightarrow\) xoy = 40.2 = 800
bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không
xin cảm ơn các bạn trước!
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
A B C H D E
a) Xét \(\Delta\)ABH và \(\Delta\)ADH có :
BH = DH (gt)
góc AHB = góc AHD ( = 90 độ )
AH chung
=> \(\Delta\)ABH = \(\Delta\)ADH (c.g.c)
=> AB = AD ( hai cạnh tương ứng )
=> \(\Delta\)ABD cân tại A , mà góc ABD = 60 độ ( Do góc ABC = 60 độ )
=> \(\Delta\)ABD là tam giác đều (đpcm)
b) Do \(\Delta\)ABD đều
=> góc BAD = 60 độ
=> góc DAC = 30 độ (1)
Xét \(\Delta\)ABC có : góc A = 90 độ, góc B = 60 độ
=> góc C = 30 độ hay góc ACD = 30 độ (2)
Từ (1) và (2) => \(\Delta\)ADC cân tại D
=> AD = DC và góc ADC = 120 độ
=> góc HDE = 120 độ ( đối đỉnh với góc ADC )
Xét \(\Delta\)AHD và \(\Delta\)CED có :
góc AHD = góc CED ( = 90 độ )
AD = CD (cmt)
góc ADH = góc CDE ( đối đỉnh )
=> \(\Delta\)AHD = \(\Delta\)CED ( cạnh huyền - góc nhọn )
=> HD = ED ( hai cạnh tương ứng )
=> \(\Delta\)HDE cân tại E, có góc HDE = 120 độ (cmt)
=> góc DHE = góc DEH = 30 độ
Ta thấy : góc DHE = góc DCA = 30 độ , mà hai góc này ở vị trí sole trong
=> HE // AC (3)
Lại có : góc BAC = 90 độ \(\Rightarrow AB\perp AC\) (4)
Từ (3) và (4) => \(HE\perp AB\) (đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
Xét ▲ AOC và ▲ BOC có:
- OC là cạnh chung.
- OA = OB(giả thiết).
- Góc BOC = góc COA(giả thiết).
→▲ AOC = ▲ BOC(cạnh - góc - cạnh).
- Tìm cách giải
Để chứng tỏ AB // CD ta chứng tỏ một cặp góc so le trong bằng nhau. Ta nghĩ đến việc chứng tỏ A ^ = C ^ vì có thể dùng các góc O 1 ^ , O 2 ^ làm trung gian.
- Trình bày lời giải
Ta có A ^ = O 1 ^ ; C ^ = O 2 ^ (đề bài cho) mà O 1 ^ = O 2 ^ (đối đỉnh) nên A ^ = C ^ .
Suy ra AB // CD vì có cặp góc so le trong bằng nhau