Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(sin^4\dfrac{\pi}{16}+sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}+sin^4\dfrac{7\pi}{16}\)
\(=\left(sin^4\dfrac{\pi}{16}+sin^4\dfrac{7\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}\right)\)
\(=\left(sin^4\dfrac{\pi}{16}+cos^4\dfrac{\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+cos^4\dfrac{3\pi}{16}\right)\)
\(=1-2sin^2\dfrac{\pi}{16}cos^2\dfrac{\pi}{16}+1-2sin^2\dfrac{3\pi}{16}cos^2\dfrac{3\pi}{16}\)
\(=2-\dfrac{1}{2}sin^2\dfrac{\pi}{8}-\dfrac{1}{2}sin^2\dfrac{3\pi}{8}\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+sin^2\dfrac{3\pi}{8}\right)\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+cos^2\dfrac{\pi}{8}\right)\)
\(=2-\dfrac{1}{2}=\dfrac{3}{2}\).
Có: \(cotx-tanx=\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=\dfrac{cos^2x-sin^2x}{sinxcosx}=\dfrac{2cos2x}{sin2x}\)
Vì vậy:
\(cot7,5^o+tan67,5^o-tan7,5^o-cot67,5^o\)
\(=\left(cot7,5^o-tan7,5^o\right)-\left(cot67,5^o-tan67,5^o\right)\)
\(=\dfrac{2cos15^o}{sin15^o}-\dfrac{2cos135^o}{sin135^o}\)
\(=2\left(\dfrac{cos15^osin135^o-sin15^ocos135^o}{sin15^osin135^o}\right)\)
\(=2.\dfrac{sin120^o}{\dfrac{1}{2}\left(cos120^o-cos150^o\right)}\)
\(=\dfrac{4.\dfrac{\sqrt{3}}{2}}{\dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}\)
a) \(\sin220^0< \sin10^0< \sin40^0< \sin90^0\)
b) \(\cos138^0< \cos90^0< \cos15^0< \cos0^0\)
\(A=tan18^otan288+sin32^osin148^o-sin302^osin122^o\)
\(=tan18^o.tan\left(-72^o\right)+sin32^o.sin32^o+sin58^o.sin58^o\)
\(=-tan18^o.cot18^o+sin^232^o+sin^258^o\)
\(=-1+sin^232^o+cos^232^2=-1+1=0\).
b) \(B=\dfrac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}\)
\(=\dfrac{1+\left(sin^2\alpha+cos^2\alpha\right)\left(sin^2\alpha-cos^2\alpha\right)}{1-\left(sin^6\alpha+cos^6\alpha\right)}\)
\(=\dfrac{1+sin^2\alpha-cos^2\alpha}{1-\left(sin^2\alpha+cos^2\alpha\right)\left(sin^2\alpha-sin\alpha cos\alpha+cos^2\alpha\right)}\)
\(=\dfrac{sin^2\alpha+1-cos^2\alpha}{1-\left(1-sin\alpha.cos\alpha\right)}\)
\(=\dfrac{sin^2\alpha+sin^2\alpha}{sin\alpha cos\alpha}\)
\(=\dfrac{2sin^2\alpha}{sin\alpha cos\alpha}=\dfrac{2sin\alpha}{cos\alpha}=2tan\alpha\).
sin ( - 50 ο ) < 0 ; tan 170 ο < 0 ;
cos ( - 90 ο ) < 0 ; sin 530 ο > 0 ,
do đó tích của chúng âm
a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\cos {0^o} = 1;\;\cos {120^o} = - \frac{1}{2}\)
Lại có: \(\cos {140^o} = - \cos \left( {{{180}^o} - {{40}^o}} \right) = - \cos {40^o}\)
\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)
b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)
Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)
\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)
c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)
Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)
\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)
d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)
Ta có: \(\tan {115^o} = - \tan \left( {{{180}^o} - {{115}^o}} \right) = - \tan {65^o}\)
Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)
\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)
e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)
Ta có: \(\cot {100^o} = - \cot \left( {{{180}^o} - {{100}^o}} \right) = - \cot {80^o}\)
Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o} =- \tan {10^o}\)
\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)
a) \(sin110^ocos130^otan30^ocot320^o\)
Ta có \(sin110^o>0;cos130^o< 0;tan30^o>0;cot320^o< 0\) nên
\(sin110^ocos130^otan30^ocot320^o>0\).
b) \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o\)
\(=-sin50^otan170^o.cos91^osin170^o\)
Do \(sin50^o>0;tan170^o< 0;cos91^o< 0,sin170^o>0\)
nên \(=-sin50^otan170^o.cos91^osin170^o< 0\)
hay \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o< 0\).
a) Ta có :
\(\sin110^0>0;\cos130^0< 0;\tan30^0>0;cot320^0< 0\)
do đó tích của chúng dương.
b) \(\sin\left(-50^0\right)< 0;tan170^0< 0;\cos\left(-91^0\right)< 0;\sin530^0>0\)
do đó tích của chúng âm.
a)
Đặt \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
Ta có: \(\left\{ \begin{array}{l}\cos {135^o} = - \cos {45^o};\cos {180^o} = - \cos {0^o}\\\tan {150^o} = - \tan {30^o}\end{array} \right.\)
\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow A = - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A = - \frac{{2 - \sqrt 2 + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A = - \frac{{\left( {2 - \sqrt 2 + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A = - \frac{{6 + 2\sqrt 3 - 3\sqrt 2 - \sqrt 6 + 6\sqrt 3 + 6}}{6}\\ \Leftrightarrow A = - \frac{{12 + 8\sqrt 3 - 3\sqrt 2 - \sqrt 6 }}{6}.\end{array}\)
b)
Đặt \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
Ta có: \(\left\{ \begin{array}{l}\cos {120^o} = - \cos {60^o}\\\cot {135^o} = - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)
\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)
\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)
\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)
c
Đặt \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)
\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)
a)
\(\cos\dfrac{22\pi}{3}=\cos\left(8\pi-\dfrac{2\pi}{3}\right)\\ =\cos\left(-\dfrac{2\pi}{3}\right)\\ =\cos\left(\dfrac{2\pi}{3}\right)\\ =-\cos\dfrac{\pi}{3}\\ =-\dfrac{1}{2}\)
b)
\(\sin\dfrac{23\pi}{4}=\sin\left(6\pi-\dfrac{\pi}{4}\right)\\ =\sin\left(-\dfrac{\pi}{4}\right)\\ =-\dfrac{\sqrt{2}}{2}\)
c)
\(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\\ =\sin\left(8\pi+\dfrac{\pi}{3}\right)-\tan\left(3\pi+\dfrac{\pi}{3}\right)\\ =\sin\dfrac{\pi}{3}-\tan\dfrac{\pi}{3}\\ =\dfrac{\sqrt{3}}{2}-\sqrt{3}\\ =\dfrac{-\sqrt{3}}{2}\)
d)
\(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\\ =\cos\dfrac{\pi}{4}\\ =\dfrac{\sqrt{2}}{2}\)
cau a: \(cos\dfrac{22\Pi}{3}=cos\dfrac{24\Pi-2\Pi}{3}=cos\left(8\Pi-\dfrac{2\Pi}{3}\right)=cos\dfrac{2\Pi}{3}=-\dfrac{1}{2}\)
câu b: \(sin\dfrac{23\Pi}{4}=sin\dfrac{24\Pi-\Pi}{4}=sin\left(6\Pi-\dfrac{\Pi}{4}\right)=-sin\dfrac{\Pi}{4}=-\dfrac{\sqrt{2}}{2}\)
cau c: \(=sin\left(8\Pi-\dfrac{\Pi}{3}\right)-tan\left(3\Pi+\dfrac{\Pi}{3}\right)=-sin\dfrac{\Pi}{3}-tan\dfrac{\Pi}{3}=-\dfrac{\sqrt{3}}{2}-\sqrt{3}=\dfrac{-3\sqrt{3}}{2}\)
cau d: \(cos^2\dfrac{\Pi}{8}-sin^2\dfrac{\Pi}{8}=cos2\left(\dfrac{\Pi}{8}\right)=cos\dfrac{\Pi}{4}=\dfrac{\sqrt{2}}{2}\)
sin 220 ο < sin 10 ο < sin 40 ο < sin 90 ο