K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Diện tích xung quanh hình nón thì bằng 1/2 tích của chu vi đường tròn đáy với đường sinh.

30 tháng 7 2018

a) Diện tích xung quanh hình lăng trụ thì bằng chu vi đường tròn đáy nhân với chiều cao.

b) Thể tích hình trụ thì bằng tích của diện tích hình tròn đáy nhân với đường cao.

c) Diện tích xung quanh hình nón thì bằng 1/2 tích của chu vi đường tròn đáy với đường sinh.

d) Thể tích hình nón bằng 1/3 tích của diện tích hình tròn đáy với chiều cao.

e) Diện tích mặt cầu thì bằng 4 lần diện tích hình tròn lớn.

f) Thể tích hình cầu thì bằng 4/3 tích của diện tích hình tròn lớn với bán kính.

21 tháng 11 2018

Diện tích xung quanh hình lăng trụ thì bằng chu vi đường tròn đáy nhân với chiều cao.

3 tháng 11 2017

Thể tích hình nón bằng 1/3 tích của diện tích hình tròn đáy với chiều cao.

25 tháng 4 2017

Hướng dẫn làm bài:

Trong tam giác vuông ABC, ta có:

AB=BC.sinC=BC.sin300=4.1/2=2(dm)

AC=BC.cosC=BC.cos300=4.√3/2=2√3(dm)

Ta có: Sxq = πRl = π. 2. 4 = 8 π (dm2)

V=1/3 π Rh=1/3 π.22.2√3=8√3.π/3(dm3)

V=pi*r^2*h

=>9*pi=pi*3^2*h

=>h=1

l=r^2+h^2=3^2+1=10

Sxq=pi*r*l=pi*3*10=30pi(cm2)

17 tháng 4 2017

Giải:

Diện tích hình quạt :

Diện tích xung quanh của hình nón: Sxq = π.r.l

Theo đầu bài ta có: Sxq= Sq => π.r.l=

Vậy l = 4r

Suy ra sin(a) = = 0,25

Vậy a = 14o28’

9 tháng 6 2017

a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)

b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)

20 tháng 5 2019

Lắp công thức tinh dịên h vào rồi giải hệ hai phương trình hai ân .\(S_{xq}=\pi rl=80\pi\)\(S_đ=\pi.r^2=\)36\(\pi\)Trong đó l đương sinh và r là ban kinh đay.Tìm được l,r rồi dùng Pitago tinh đường cao h .Lắp vào công thức tinh  thể h là xong .