K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

Vì AD là phân giác góc B A C ^  nên ta có: B D D C = A B A C = 15 20 = 3 4

⇒ B D D C = 3 4 ⇒ B D B D + D C = 3 4 + 3 = 3 7 ⇔ B D B C = 3 7 ⇒ x 28 = 3 7

=> x = 12cm => y = 28 – x = 16 cm

Vậy x = 12cm; y = 16cm

Đáp án: D

13 tháng 2 2022

Theo tính chất tpg của tam giác, ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\dfrac{AB}{x}=\dfrac{AC}{y}=\dfrac{15+20}{x+y}=\dfrac{35}{28}\) = 1,25

\(\Rightarrow x=\dfrac{15}{1,25}=12cm\)

\(\Rightarrow y=\dfrac{20}{1,25}=16cm\)

\(\RightarrowĐáp.án.D\)

13 tháng 2 2022

D

22 tháng 4 2017

* Trong hình 14a

2016-01-15_205217

mà DE = MD + ME = 9.5 + 28 = 37.5

2016-01-15_205257

* Trong hình 14b

Ta có A’B’ ⊥ AA'(gt) và AB ⊥ AA'(gt)

=> A’B’ // AB =>

2016-01-15_205338

2016-01-15_205347

∆ABO vuông tại A

=> OB2 = y2 = OA2 + AB2

=> y2 = 62+ 8,42

=> y2 = 106,56

=> y ≈ 10,3

4 tháng 7 2017

a)Dễ

b)Dễ

c)Dễ

10 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)

\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)

Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)

 

11 tháng 12 2016

ff

24 tháng 5 2017

Hình 1

Theo định lý ta lét trong tam giác ta có :

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)=\(\dfrac{17}{27}=\dfrac{x}{x+9}\)=>27x=17x+153

=>x=15.3cm

Hình 2

Theo định lý ta lét trong tam giác ta có :

\(\dfrac{PE}{PQ}=\dfrac{PF}{PR}\)=\(\dfrac{16}{x}=\dfrac{20}{35}\)=>20x=560

=>x=28cm

1 tháng 5 2019

\(x^2+y^2=3\frac{1}{3}xy\)hay \(x^2+y^2=\frac{10}{3}xy\)

\(\Rightarrow x^2+2xy+y^2=\frac{16}{3}xy\)\(\Rightarrow\left(x+y\right)^2=\frac{16}{3}xy\)

tương tự : \(\left(x-y\right)^2=\frac{4}{3}xy\)

\(\Rightarrow\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{1}{4}\Rightarrow\orbr{\begin{cases}\frac{x-y}{x+y}=\frac{1}{2}\\\frac{x-y}{x+y}=\frac{-1}{2}\end{cases}}\)

vì x > y > 0 nên x - y > 0 \(\Rightarrow\frac{x-y}{x+y}>0\)

Vậy \(\frac{x-y}{x+y}=\frac{1}{2}\)

1 tháng 5 2019

Xét\(x^2+2xy+y^2=\frac{10}{3}xy+2xy=\frac{16}{3}xy\)

     \(x^2-2xy+y^2=\frac{10}{3}xy-2xy=\frac{4}{3}xy\)

Từ đó ta được:

\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{\left(\frac{4}{3}xy\right)}{\left(\frac{16}{3}xy\right)}=\frac{1}{4}\)

\(\Rightarrow\sqrt{\frac{\left(x-y\right)^2}{\left(x+y\right)^2}}=\frac{1}{2}\Rightarrow\left|\frac{x-y}{x+y}\right|=\frac{1}{2}\)

Hihi

đến đây bạn tự làm nốt nha

^-^ Học tốt

22 tháng 4 2017
Xét \(\Delta\)ABD và \(\Delta\)BDC có:
\(\widehat{DBC}=\widehat{DBC}\left(gt\right)\)
\(\Rightarrow\Delta\)ABD ∽ \(\Delta\)BDC(trường hợp 3)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{DB}{DC}\Rightarrow BD^2=AB.BC\)
=> BD = \(\sqrt{ }\)(AB.DC) = \(\sqrt{ }\)(12,5.8,5) = \(\sqrt{ }\)356,25 => BD = 18,9 cm
22 tháng 4 2017

Xét ∆ABD và ∆BDC có:

2016-01-16_190637

=> ∆ABD ∽ ∆BDC(trường hợp 3)

2016-01-16_190746

=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm

11 tháng 9 2016

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^{x+y}}=2^3\)

\(2x-x-y=3\)

\(x-y=3\)

\(2x-2y=6\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(2x+2y-5y=5\)

\(2x-3y=5\)

\(2x-2y=6\)

\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)

\(-y=-1\)

\(y=1\)

x = 4

x . y = 4