Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn: D
Hướng dẫn:
Tam giác ABM là tam giác đều cạnh a = 30 (cm) = 0,3 (m).
- Cường độ điện trường do q 1 = 2 . 10 - 2 (μC) = 2. 10 - 8 (C) đặt tại A, gây ra tại M là
- Cường độ điện trường do q 2 = - 2 . 10 - 2 (μC) = - 2. 10 - 8 (C) đặt tại B, gây ra tại M là
- Cường độ điện trường tổng hợp tại điểm M là
Chọn: C
Hướng dẫn:
Tam giác ABM là tam giác đều cạnh a = 30 (cm) = 0,3 (m).
- Cường độ điện trường do q 1 = 2 . 10 - 2 (μC) = 2. 10 - 8 (C) đặt tại A, gây ra tại M là
- Cường độ điện trường do q 2 = - 2 . 10 - 2 (μC) = - 2. 10 - 8 (C) đặt tại B, gây ra tại M là
- Cường độ điện trường tổng hợp tại điểm M là
- Lực điện tác dụng lên điện tích q 0 = 2 . 10 - 9 (C) đặt tại điểm M có hướng song song với AB và độ lớn là F = q 0 .E = 4. 10 - 6 (N).
Chọn đáp án C
@ Lời giải:
+ Tam giác ABM là tam giác đều cạnh a = 30 (cm) = 0,3 (m).
+ Cường độ điện trường do q1 = 2.10-2 (μC)
+ Cường độ điện trường do q = - 2.10-2 (μC) = - 2.10-8 (C) đặt tại B, gây ra tại M là:
Đáp án: C
Để cường độ điện trường tại M bằng 0 thì hai vecto E 1 do q1 gây ra và E 2 do q2 gây ra phải ngược chiều và cùng độ lớn nên M nằm trên đường thẳng AB và ngoài đoạn AB
Do |q2| > |q1| nên r1 < r2 => r1 = r2 - AB,
=>
+ - A B C q1 q2 E1 E2 E
Nhận xét: Do \(AB^2=AC^2+BC^2\) nên tam giác ABC vuông tại C.
Điện trường tổng hợp tại C là: \(\vec{E}=\vec{E_1}+\vec{E_2}\)
Suy ra độ lớn: \(E=\sqrt{E_1^2+E_2^2}\) (*) (do \(\vec{E_1}\) vuông góc với \(\vec{E_2}\) )
\(E_1=9.10^9.\dfrac{16.10^{-8}}{0,04^2}=9.10^5(V/m)\)
\(E_1=9.10^9.\dfrac{9.10^{-8}}{0,03^2}=9.10^5(V/m)\)
Thay vào (*) ta được \(E=9\sqrt2.10^5(V/m)\)