K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

Độ lệch pha giữa hai dao động là ∆φ = 0,75π – 0,5π = 0,25π rad.

24 tháng 6 2018

5 tháng 2 2019

Chọn D.

7 tháng 6 2017

Đáp án A

27 tháng 4 2019

Đáp án D

Ta có:

A 2   = A 1 2   + A 2 2   + 2 A 1 A 2 cos (   φ   1 -   φ   2 ) = 48

5 tháng 10 2017

Chọn A.

O
ongtho
Giáo viên
28 tháng 11 2015

Dao động tổng hợp x = x1 + x2

+ Khi x2 = 0 thì x1 = x - x2 = \(-5\sqrt{3}\)

+ Khi x1 = - 5 thì x2 = x - x1 = -2 + 5 = 3

Giả sử pt \(x_1=10\cos\left(\omega t\right)\) thì \(x_2=A_2\cos\left(\omega t+\varphi\right)\) (với \(\left|\varphi\right|<\frac{\pi}{2}\))

Theo giả thiết ta có:

\(\begin{cases}10\cos\left(\omega t\right)=-5\sqrt{3}\\A_2\cos\left(\omega t+\varphi\right)=0\end{cases}\)\(\Rightarrow\begin{cases}\cos\left(\omega t\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\omega t+\varphi\right)=0\end{cases}\)

cos O M1 M2 -√3/2 60°

Do \(\left|\varphi\right|<\frac{\pi}{2}\) nên ta chỉ có trường hợp như hình trên thỏa mãn, nghĩa là ta tìm đc \(\varphi=-\frac{\pi}{3}\)

Mặt khác: \(\begin{cases}10\cos\left(\omega t'\right)=-5\\A_2\cos\left(\omega t'+\varphi\right)=3\end{cases}\)\(\Rightarrow\begin{cases}\cos\left(\omega t'\right)=-\frac{1}{2}\\\cos\left(\omega t'+\varphi\right)=\frac{3}{A_2}\end{cases}\)

Cũng biểu diễn trên đường tròn lượng giác như trên, ta được

cos O M1 M2 -1/2 1/2

\(\Rightarrow A_2=6cm\)

Biên độ tổng hợp:

\(A^2=10^2+6^2+2.10.6.\cos\frac{\pi}{3}\Rightarrow A=14\)cm.

 

O
ongtho
Giáo viên
29 tháng 11 2015

@trương quang kiet Không có chi, chỉ cần bạn tick đúng cho tớ là được rùi :)

16 tháng 10 2017

Đáp án D

+ Ta có   x 2 = x - x 1 = 8 cos π t - 5 π 6     c m .

13 tháng 10 2018

20 tháng 4 2018

Đáp án D