Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu F1=F2
do góc giữa vecto F1, F2=60o
áp dụng định lý hàm cos
F2=F12+ F22+2F1F2cos (vecto)
=> F1=0,58F
Phân tích lực F→F→ thành hai lực F1−→F1→ và F2−→F2→ theo hai phương OA và OB (hình 9.10). Giá trị nào sau đây là độ lớn của hai lực thành phần? A. F1 = F2 = F; B. F1 = F2 = 1212F; C. F1 = F2 = 1,15F; D. F1 = F2 = 0,58F. |
F=\(\sqrt{F^2_1+F_2^2+2F_1.F_2.\cos\alpha}\)\(\Rightarrow\)F2=0N
\(F_1=F.\cos30=\frac{60.\sqrt{3}}{2}=30\sqrt{3}\left(N\right)\)
\(F_2=F.\cos60=\frac{60.1}{2}=30\left(N\right)\)
Muốn thử lại xem đúng hay ko áp dụng định lý hàm sin
\(F^2=F_1^2+F_2^2+2F_1F_2.\cos\left(\widehat{F_1;F_2}\right)\)
Chắc chắn đúng =))
Tặng kèm cái hình
mình muốn hỏi là ở câu b có F=3,5N mà Fmin=4. Vậy tại sao F>Fmin ???
\(cos\alpha=\dfrac{F_1^2+F_2^2-F^2}{2.F_1.F_2}\)\(\Rightarrow\)\(\alpha\)\(\approx\)1190
Bài 1:
\(\alpha= 0\) \(\Rightarrow F = F_1+F_2 = 16+12=28N\)
\(\alpha = 30^0\)\(\Rightarrow F^2=16^2+12^2+2.16.12.\cos30^0=...\Rightarrow F\)
Các trường hợp khác bạn tự tính nhé.
Bài 2:
Ta có: \(F_1=k.\Delta \ell_1=k.(0,24-0,12)=0,12.k=5\) (1)
\(F_1=k.\Delta \ell_2=k.(\ell-0,12)=10\) (2)
Lấy (2) chia (1) vế với vế: \(\dfrac{\ell-0,12}{0,12}=2\)
\(\Rightarrow \ell = 0,36m = 36cm\)
Bài 3:
Áp lực lên sàn: \(N=P=mg\)
Áp dụng định luật II Niu tơn ta có: \(F=m.a\Rightarrow -F_{ms}=ma\)
\(\Rightarrow a = \dfrac{-F_{ms}}{m}= \dfrac{-\mu.N}{m}== \dfrac{-\mu.mg}{m}=-\mu .g =- 0,1.10=-1\)(m/s2)
Quãng đường vật đi được đến khi dừng lại là \(S\)
Áp dụng công thức độc lập: \(v^2-v_0^2=2.a.S\)
\(\Rightarrow 0^2-10^2=2.1.S\Rightarrow S = 50m\)
Ta có điều kiện của hợp lực của hai lực thành phần: F 1 − F 2 ≤ F ≤ F 1 + F 2
=> A, B, C – sai
D - đúng
Đáp án: D