Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090
NA/BA = NC/BC
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm)
=> NC-NA=4 (cm)
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2
=> NA= BA*2 =6 (cm)
Đặt t = ab +bc+ ac => a2+ b2+ c2=1 - 2t
theo BĐT AM-GM : ab + bc +ac \(\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}=a^2+b^2+c^2\)
suy ra : t = ab +bc+ ac = \(\frac{2\left(ab+bc+ac\right)+\left(ab+bc+ac\right)}{3}\le\frac{2\left(ab+bc+ac\right)+\left(a^2+b^2+c^2\right)}{3}=\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Từ đó ta đã đưa bài toán trên về dạng đơn giản hơn : CMR : \(\frac{3}{t}+\frac{2}{1-2t}\ge14\)(Với \(0\le t\le\frac{1}{3}\))
\(\Leftrightarrow3\left(1-2t\right)+2t\ge14\left(1-2t\right)\)
\(\Leftrightarrow3-4t\ge14-28t^2\Leftrightarrow3-18t+28t^2\ge0\)
\(\Leftrightarrow3\left(1-3t\right)^2+t^2\ge0\)(Luôn đúng )
=> ĐPCM
Dấu = không xảy ra.
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\) ( đpcm)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên
Áp dụng hệ thức liên hệ giữa cạnh và góc trong tam giác vuông ta có:
Vậy AC = 37,2cm; AB = 33,5cm; C ^ = 42 0
Đáp án cần chọn là: D