Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
Sửa đề:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)
Xét \(x,y\ge0\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)
Ta có:
\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)
\(\Rightarrow x=y\)
Làm tiếp
Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)
Xét \(x,y\ge0\)
Ta có:
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)
\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)
\(\Rightarrow3\ge2x+y\left(3\right)\)
Ta có:
\(3x+10\sqrt{xy}-y=12\)
\(VT\le3x+5\left(x+y\right)-y=8x+4y\)
\(\Rightarrow12\le8x+4y\)
\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)
Làm nốt
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
\(\hept{\begin{cases}\frac{x+4}{x+3}-\frac{2}{y-1}=10\\\frac{x+6}{x+3}+\frac{1}{y-1}=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x+4}{x+3}-\frac{2}{y-1}=10\\\frac{2x+12}{x+3}+\frac{2}{y-1}=14\end{cases}}\)
\(\Leftrightarrow\left(\frac{x+4}{x+3}-\frac{2}{y-1}\right)+\left(\frac{2x+12}{x+3}+\frac{2}{y-1}\right)=24\)
\(\Leftrightarrow\frac{x+4}{x+3}+\frac{2x+12}{x+3}=24\)
\(\Leftrightarrow\frac{x+4+2x+12}{x+3}=24\)
\(\Leftrightarrow\frac{3x+16}{x+3}=24\)
\(\Leftrightarrow3x+16=24x+62\)
\(\Leftrightarrow21x+46=0\)
\(\Rightarrow x=\frac{-46}{21}\)
Okey,giờ tìm y đơn giản rồi nhen :D
\(\hept{\begin{cases}x^2+y^2+2\left(x+y\right)=7\\y\left(y-2x\right)-2x=10\end{cases}}\)
<=> \(\hept{\begin{cases}\left(x+1\right)^2+\left(y+1\right)^2=9\\\left(y-x\right)^2-\left(x+1\right)^2=9\end{cases}}\)
Đặt: x + 1 = a và y + 1 = b ta có hẹ mới:
\(\hept{\begin{cases}a^2+b^2=9\left(1\right)\\\left(a-b\right)^2-a^2=9\left(2\right)\end{cases}}\)
(2)< => \(a^2-2ab+b^2-a^2=9\)
<=> \(9-2ab-a^2=9\)
<=> \(a^2+2ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-2b\end{cases}}\)
TH: a = 0 ta có: \(b^2=9\Leftrightarrow b=\pm3\)
Với a = 0 ; b = 3 => x = -1 ; y = 2 ( thử vào tm)
Với a = 0; b = - 3 => x = -1; y = -4 ( thử vào tm)
TH: a = - 2b thế vào ( 1) ta có: \(4b^2+b^2=9\Leftrightarrow5b^2=9\Leftrightarrow\orbr{\begin{cases}b=\frac{3\sqrt{5}}{5}\\b=-\frac{3\sqrt{5}}{5}\end{cases}}\)
Với \(b=\frac{3\sqrt{5}}{5}\)ta có: a = \(-\frac{6\sqrt{5}}{5}\)
=> x = \(-\frac{6\sqrt{5}}{5}-1\); y = \(\frac{3\sqrt{5}}{5}-1\)( thử lại thỏa mãn)
Với \(b=-\frac{3\sqrt{5}}{5}\) ta có: a = \(\frac{6\sqrt{5}}{5}\)
=> x = \(\frac{6\sqrt{5}}{5}-1\); y = \(-\frac{3\sqrt{5}}{5}-1\)( thử lại thỏa mãn)
Ta có : \(\hept{\begin{cases}x^2+y^2+2\left(x+y\right)=7\left(1\right)\\y\left(y-2x\right)-2x=10\left(2\right)\end{cases}}\)
Lấy (1)- ( 2)
x2 +2xy + 4x + 2y + 3 = 0
<=> ( x2 + x ) + ( 2yx + 2y) + 3.( x + 1) =0
<=> ( x + 1 ) ( x + 2y + 3 ) = 0
<=> \(\orbr{\begin{cases}x=1\left(^∗\right)\\x=-2y-3\left(^∗^∗\right)\end{cases}}\)
Thay (*) vào ( 1)
=> 12 + y2 +2( 1+ y) -7 = 0
<=> y2 + 2y -4 = 0
<=> \(\orbr{\begin{cases}y_1=-1+\sqrt{5}\\y_2=-1-\sqrt{5}\end{cases}}\)
Thay ( **) vào (1)
(-2y-3)2 + y2 +2(-2y-3 + y) = 7
5y2 + 10y - 4 = 0
<=> \(\orbr{\begin{cases}y=\frac{-5+3\sqrt{5}}{5}\Rightarrow x=-\frac{5+6\sqrt{5}}{5}\\y=\frac{-5-3\sqrt{5}}{5}\Rightarrow x=-\frac{5+6\sqrt{5}}{5}\end{cases}}\)
\(\hept{\begin{cases}x^2+xy+x-y-2y^2=0\\x^2-y^2+x+y=6\end{cases}}\)
\(hpt\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\\left(x+y\right)\left(x-y+1\right)=6\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+2y+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=y\\x=-1-2y\end{cases}}\)
- Xét \(x=y\) thay vào \(\left(2\right)\) ta có:
\(\left(2\right)\Leftrightarrow2y=6\Leftrightarrow y=3\Leftrightarrow x=y=3\)
- Xét \(x=-1-2y\) thay vào \(\left(2\right)\) ta có:
\(\left(2\right)\Leftrightarrow3y^2+3y=6\Leftrightarrow3y^2+3y-6=0\)
\(\Leftrightarrow3\left(y-1\right)\left(y+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\Rightarrow x=-1-2y=-3\\y=-2\Rightarrow x=-1-2y=3\end{cases}}\)
Vậy hpt có nghiệm là \(\left(x;y\right)=\left(3;3\right);\left(-3;1\right);\left(3;-2\right)\)
Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)
Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
x 3 + x y 2 − 10 y = 0 x 2 + 6 y 2 = 10 < = > x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 (1) x 2 + 6 y 2 = 10 (2)
Từ phương trình (1) ta có:
x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 < = > x 3 + x y 2 − x 2 y − 6 y 3 = 0 < = > x 3 − 2 x 2 y + x 2 y − 2 x y 2 + 3 x y 2 − 6 y 3 = 0 < = > ( x − 2 y ) ( x 2 + x y + 3 y 2 ) = 0 < = > x = 2 y x 2 + x y + 3 y 2 = 0
+ Trường hợp 1: x 2 + x y + 3 y 2 = 0 < = > ( x + y 2 ) 2 + 11 y 2 4 = 0 = > x = y = 0
Với x= y = 0 không thỏa mãn phương trình (2).
+ Trường hợp 2: x= 2y thay vào phương trình (2) ta có:
4 y 2 + 8 y 2 = 12 < = > y 2 = 1 < = > y = 1 = > x = 2 y = − 1 = > x = − 2
Vậy hệ phương trình có 2 nghiệm ( x ; y ) ∈ { ( 2 ; 1 ) ; ( − 2 ; − 1 ) }