K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

1 x − x y = x 2 + x y − 2 y 2 ( 1 ) x + 3 − y 1 + x 2 + 3 x = 3 ( 2 )

Điều kiện:  x > 0 y > 0 x + 3 ≥ 0 x 2 + 3 x ≥ 0 ⇔ x > 0 y > 0

( 1 ) ⇔ y − x y x = ( x − y ) ( x + 2 y ) ⇔ ( x − y ) x + 2 y + 1 y x = 0 ⇔ x = y do  x + 2 y + 1 y x > 0 , ∀ x , y > 0

Thay y = x vào phương trình (2) ta được:

( x + 3 − x ) ( 1 + x 2 + 3 x ) = 3 ⇔ 1 + x 2 + 3 x = 3 x + 3 − x ⇔ 1 + x 2 + 3 x = x + 3 + x ⇔ x + 3 . x − x + 3 − x + 1 = 0 ⇔ ( x + 1 − 1 ) ( x − 1 ) = 0 ⇔ x + 3 = 1 x = 1 ⇔ x = − 2 ( L ) x = 1 ( t m ) ⇒ x = y = 1

Vậy hệ có nghiệm duy nhất (1;1)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

6 tháng 3 2016

ố ô dài thế tôi làm 1 nửa thôi nhá
 

22 tháng 7 2017

ĐK \(\hept{\begin{cases}x-y+1\ne0\\x+y-2\ne0\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y+1}=a\\\frac{1}{x+y-2}=b\end{cases}}\)Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-3b=-1\\-3a+b=12\end{cases}\Leftrightarrow\hept{\begin{cases}2a-3\left(12+3b\right)=-1\\b=12+3b\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}-7a=35\\b=12+3b\end{cases}\Leftrightarrow\hept{\begin{cases}a=-5\\b=12+3.\left(-5\right)=-3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-y+1}=-5\\\frac{1}{x+y-2}=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=-\frac{6}{5}\\x+y=\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=y-\frac{6}{5}\\2y-\frac{6}{5}=\frac{5}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-\frac{6}{5}\\y=\frac{43}{30}\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=\frac{7}{30}\\y=\frac{43}{30}\end{cases}}}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\frac{7}{30};\frac{43}{30}\right)\)

24 tháng 5 2020

https://hoidap247.com/cau-hoi/792646

27 tháng 11 2016

\(\hept{\begin{cases}x^3+1=2\left(x^2-x+y\right)\left(1\right)\\y^3+1=2\left(y^2-y+x\right)\left(2\right)\end{cases}}\)

Lấy (1) - (2) vế theo vế ta được

\(x^3-y^3=2\left(x^2-y^2\right)+4\left(y-x\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy-2x-2y+4\right)=0\)

Thế vào 1 trong 2 phương trình còn lại giải tiếp sẽ ra

21 tháng 9 2018

a/ \(\left(x^2+2x+8\right)\left(x^2+13x+8\right)=0\)

b/ \(\hept{\begin{cases}x^3-y^3=3\left(x-y\right)\left(1\right)\\x+y=-1\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)

Tơi đây đơn giản rồi nhe

23 tháng 11 2016

x+y+z=1;x^2+y^2+z^2=1;x^3+y^3+z^3=1

=>x+y+z=x^2+y^2+z^2=x^3+y^3+z^3=1

=>x=y=z=1

2 tháng 6 2017

x = y = z = 1

\(\Rightarrow\) x + y + z = 3

mà đề bảo x + y + z = 1

\(\Rightarrow\) làm sai

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

2 tháng 11 2017

câu này quen ha

cái này giả sử x+1>=y-5, rồi cho chúng = nhau

hoặc liên hợp cũng được (PT1)