K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

       \(5^x+5^{1-x}-6=0\)

<=> \(5^x+\frac{5}{5^x}-6=0\)

<=> \((5^x)^2-6.5^x+5=0\)

<=> \(5^x=5 \) hoặc \(5^x=1\)

<=> \(x=1 \) hoặc \(x=log_{5}{1}\)

Vậy phương trình đã cho có nghiệm: \(x=1 \) hoặc \(x=log_{5}{1}\)

8 tháng 4 2016

\(5^x+5^{1-x}-6=0\Leftrightarrow5^{2x}-6.5+5=0\)

\(\Leftrightarrow\begin{cases}5^x=5\\5^x=1\end{cases}\)

\(\Rightarrow\begin{cases}x=1\\x=0\end{cases}\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

2 tháng 4 2017

a) Đặt t = 13x > 0 ta được phương trình:

13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0

⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0

b)

Chia cả hai vế phương trình cho 9x ta được phương trình tương đương

(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x

Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:

(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}

Với t=13t=13 ta được nghiệm x=log2313x=log2313

Với t = 1 ta được nghiệm x = 0

c) Điều kiện: x > 2

Vì nên phương trình đã cho tương đương với:

[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5

d) Điều kiện: x > 0

log22x – 5log2x + 6 = 0

⇔(log2x – 2)(log2x – 3) = 0

⇔ x ∈ {4, 8}



23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 5 2017

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit