Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là (m)
Theo đề bài ta có: là nghiệm của phương trình
Đáp án: A
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là (m)
Theo đề bài ta có:
Đổi gấp rưỡi = 1,5= 15/10= 3/2
Nửa chu vi hình chữ nhật là:
400:2=200 (m)
Chiều dài cái ao hình chữ nhật là:
200:(3+2)x3=120
Diện tích cái ao hình chữ nhật là:
120x(200-120)=9600 (m2)
Diện tích của cái ao là:
9600:100x3=288 (m2)
Vậy diện tích còn lại của mảnh vườn bằng:
9600-288=9312 (m2)
Từ một điểm S ở ngoài đt (o) kẻ tiếp tuyến SA và một các tuyến SBC ( góc BAC <90) Phân giác góc BAC cắt BC tại D và cắt đt tại điểm thứ hai là E Cac tiếp tuyến của đt (o) tại C và E cắt nhau tại N. P là giao điểm AE và CN
CM a ) SA =SD B) EN//BC C) \(\frac{1}{cn}=\frac{1}{cp}+\frac{1}{cd}\) ANH CHỊ GIÚP E VỚI Ạ CÂU C Í Ở MATHONLINE KHÔNG AI GIÚP EM MỚI SANG ĐÂY
a) Gọi chiều dài mảnh vườn là a(m)
Khi đó ta có \(2a + 2x = 40 \Leftrightarrow a = 20 - x\)
Vậy diện tích mảnh vườn hình chữ nhật là: \(S = a.x = (20 - x)x = - {x^2} + 20x\)
b) Để diện tích mảnh vườn lớn nhất thì S phải lớn nhất:
Ta có \(S = - {x^2} + 20x = - ({x^2} - 20x + 100) + 100 = 100 - {(x - 10)^2} \le 100\)(vì \({(x - 10)^2} \ge 0\))
Diện tích mảnh vườn lớn nhất là 100 \(\left( {{m^2}} \right)\) khi x = 10
Chiều rộng bằng: \(\frac{2}{7}\) : 40% = \(\frac{5}{7}\) chiều dài
Chiều rộng hình chữ nhật là: 70 . \(\frac{5}{7}\) = 50 (m)
Chu vi hình chữ nhật là: (70 + 50) . 2 = 240 (m)
Diện tích hình chữ nhật là: 70 . 50 = 3500 (m2)
40% củ chiều rộng là:
70*\(\frac{2}{7}\)=20(m)
chiều rộng của miếng đất là:
20:40*100=20(m)
chu vi miếng đất là:
(70+50)*2=240(m)
Diện tích miếng đất là:
70*20=1400(m2)
Đáp số :chu vi 240m
diện tích 1400m2
Lạy trờ phật co em dc 1GB
Diện tích mỗi phần:
\(\left(\frac{15}{4}\cdot\frac{2}{3}\right):5=\frac{1}{2}\left(m^2\right)\)
Đáp số : \(\frac{1}{2}m^2\)
Gọi x là chiều rộng của vườn hoa (\(x > 0\), tính bằng đơn vị mét)
Theo giả thiết ta có chiều dài là \(15 - x\)
Diện tích của vườn hoa có phương trình như sau \(f\left( x \right) = x\left( {15 - x} \right) = - {x^2} + 15x\)
Ta có bất phương trình thỏa mãn bài toán như sau:\( - {x^2} + 15x \ge 50 \Leftrightarrow - {x^2} + 15x - 50 \ge 0\)
Xét tam thức \(g\left( x \right) = - {x^2} + 15x - 50\) có hai nghiệm phân biệt là \({x_1} = 5;{x_2} = 10\) và \(a = - 1 < 0\) nên \(g\left( x \right) > 0\) khi x thuộc đoạn \(\left[ {5;10} \right]\)
Vậy khi chiều rộng nằm trong đoạn \(\left[ {5;10} \right]\) mét thì diện tích vườn hoa ít nhất là 50 \({m^2}\).
...,,,,,,,,,,@ giải một bài toán