Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)
Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3
x=5.3=15 ; y=7.3=21
b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)
Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)
x/9=-1=>x=-9 ; y/5=-1=>y=-5
các bài còn lại tương tự b
a)\(x-\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}\)
b)\(|x|-\frac{4}{5}=\frac{2}{3}\\ \Rightarrow|x|=\frac{2}{3}+\frac{4}{5}=\frac{22}{15}\\ \Rightarrow|x|=\frac{22}{15}\\ \Rightarrow x=\frac{22}{15}\)
c)\(\frac{x}{-5}=\frac{24}{15}\\ \Rightarrow x=\frac{-5\cdot24}{15}=-8\)
d)\(\frac{x}{4}=\frac{y}{5} và x-y=21\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{21}{-1}=-21\)
Do đó :
\(\frac{x}{4}=-21\Rightarrow x=-84\)
\(\frac{y}{5}=-21\Rightarrow y=-105\)
\(x-\frac{3}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}+\frac{3}{5}\)
\(x=\frac{6}{5}\)
\(\left|x\right|-\frac{4}{5}=\frac{2}{5}\)
\(\left|x\right|=\frac{2}{5}+\frac{4}{5}\)
\(\left|x\right|=\frac{6}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-\frac{6}{5}\end{cases}}\)
\(\frac{x}{-5}=\frac{24}{15}\)
\(\Rightarrow x.15=\left(-5\right).24\)
\(\Rightarrow x.15=-120\)
\(\Rightarrow x=-120:15\)
\(\Rightarrow x=-8\)
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\begin{cases}x=6\\y=14\end{cases}\)
b) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
=> \(\begin{cases}x=10\\y=4\end{cases}\)
a) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}x=2.3=6\\y=2.7=14\end{cases}\)
Vậy x = 6; y = 14
b) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}x=2.5=10\\y=2.2=4\end{cases}\)
Vậy x = 10; y = 4
\(\frac{x+1,2}{y}=\frac{11}{5}\Rightarrow\frac{x}{y}+\frac{1,2}{y}=\frac{11}{5}\)
\(\Rightarrow\frac{4}{5}+\frac{1,2}{y}=\frac{11}{5}\Rightarrow\frac{1,2}{y}=\frac{7}{5}\Rightarrow y=1,2:\frac{7}{5}=\frac{6}{7}\)
\(\Rightarrow x=\frac{4}{5}y=\frac{4}{5}.\frac{6}{7}=\frac{24}{35}\)
a) \(\frac{1}{y}+\frac{x}{4}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{y}=\frac{1}{2}-\frac{x}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{2-x}{4}\)
\(\Leftrightarrow\left(2-x\right).y=4\)
Do \(x,y\inℤ\Rightarrow2-x,y\inℤ\)
nên \(2-x,y\) là các cặp ước của 4
Ta có bảng giá trị :
2-x | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 3 | 0 | 4 | -2 | 6 |
y | 4 | -4 | -2 | 2 | 1 | -1 |
Đánh giá | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(1,4\right);\left(3,-4\right);\left(0,-2\right);\left(4,2\right);\left(-2,1\right);\left(6,-1\right)\right\}\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x.\left(1-2y\right)=40\)
Nhận xét x,y và lập bảng giá trị tương tự câu a).
bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y
\)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )