K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

\(\frac{y^2-12}{6y-36}+\frac{6}{y^2-6y}=\frac{y^2-12}{6\left(y-6\right)}+\frac{6}{y\left(y-6\right)}\)\(=\frac{\left(y^2-12\right)y}{6y\left(y-6\right)}+\frac{36}{6y\left(y-6\right)}\)

\(=\frac{y^3-12y+36}{6y\left(y-6\right)}\)

 

28 tháng 11 2016

nếu mk ko nhầm thì \(y-12\) chứ sao y^2-12

11 tháng 11 2019

Bổ sung cái cậu ghi hình như mẫu thức \(6y^7t\)

Hai mẫu thức là \(6y^7t\) và \(3t^8\)

-BCNN(6,3) = 6

- Số mũ cao nhất của luỹ thừa là \(y\) là 7, ta chọn nhân tử \(y^7\)

- Số mũ cao nhất của luỹ thừa cơ số \(t\) là 8 ta chọn nhân tử \(t^8\)

Từ cách làm trên mẫu thức chung của hai phân thức là: \(6y^7t^8\)

27 tháng 11 2018

Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)

\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)

\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)

\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)

\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)

1 tháng 12 2018

\(a,\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2.\left(x-1\right)}+\dfrac{-2x}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)}{2.\left(x-1\right).\left(x+1\right)}+\dfrac{\left(-2x\right).x}{x.\left(x+1\right).\left(x-1\right)}=\dfrac{\left(x+1\right).\left(x+1\right)-2x^2}{x.\left(x+1\right)\left(x-1\right)}\)

25 tháng 11 2022

b: \(=\dfrac{y^2-12y+24}{6y\left(y-6\right)}\)

c: \(=\dfrac{12-2x+3x}{2x\left(x+3\right)}=\dfrac{x+12}{2x\left(x+3\right)}\)

15 tháng 12 2019

B1 :

a) (2x - 1)2

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

20 tháng 11 2017

fdsafdas

fdasfadsf

fdasfadsf

fdsafdsaf

fdsafsda

10 tháng 11 2017

a) \(\dfrac{2}{x+3}+\dfrac{1}{x}\) [ MTC: x(x+3) ]

\(=\dfrac{x.2}{x\left(x+3\right)}+\dfrac{1\left(x+3\right)}{x\left(x+3\right)}\)

\(=\dfrac{2x+x+3}{x\left(x+3\right)}\)

\(=\dfrac{3x+3}{x\left(x+3\right)}\)

\(=\dfrac{3\left(x+1\right)}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)

\(=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\) \(\left[MTC:2\left(x-1\right)\left(x+1\right)\right]\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\dfrac{-2x.2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x^2+2x+1\right)-4x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x^2-2x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)}{2\left(x+1\right)}\)

11 tháng 11 2017

a) Ta có :

\(\dfrac{2}{x+3}+\dfrac{1}{x}=\dfrac{2x+x+3}{x\left(x+3\right)}\)

b) \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}=\dfrac{x+1}{2\left(x-1\right)}+\dfrac{-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)-2x.2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{-3x+1}{2\left(x-1\right)\left(x+1\right)}\)

c) \(\dfrac{y-12}{6y-36}+\dfrac{6}{y^2-6y}=\dfrac{y-12}{6\left(y-6\right)}+\dfrac{6}{y\left(y-6\right)}\)

\(=\dfrac{y^2-12+36}{6y\left(y-6\right)}=\dfrac{y^2-24}{6y\left(y-6\right)}\)

d) \(\dfrac{6+x}{x+3x}+\dfrac{3}{2x+6}=\dfrac{6+x}{4x}+\dfrac{3}{2\left(x+3\right)}\)

\(=\dfrac{\left(6+x\right)\left(2x+6\right)+12x}{8x\left(x+3\right)}\)(Đề câu này phải sửa thành\(\dfrac{6+x}{x^2+3x}chứ\)) ???