K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x}{2}-\frac{4}{2}=\frac{y}{3}-\frac{6}{3}=\frac{z}{4}-\frac{8}{4}=\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)

\(=>\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)

\(=>\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.4=12\end{cases}}\)

Bạn ko cần phải lo vì hồi hè mik làm bài này nhìu lắm rùi

Chúc bạn học giỏi nha!!!

K cho mik với nhé

4 tháng 8 2016

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\)

\(\Rightarrow\frac{x-4+y-6+z-8}{2+3+4}\)

\(\Rightarrow\frac{\left(x+y+z\right)-18}{9}\)

\(\Rightarrow\frac{27-18}{9}=\frac{9}{9}=1\)

\(\Rightarrow\frac{x-4}{2}=1\Rightarrow x=6\)

\(\Rightarrow\frac{y-6}{3}=1\Rightarrow y=9\)

\(\Rightarrow\frac{z-8}{4}\Rightarrow z=12\)

11 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{\left(x+y+z\right)-\left(4+6+8\right)}{2+3+4}=\frac{27-18}{9}=1\)

\(\Rightarrow x-4=2\Rightarrow x=6\)

\(\Rightarrow y-6=3\Rightarrow y=9\)

\(\Rightarrow z-8=4\Rightarrow z=12\)

11 tháng 8 2016

Ta có : \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\) và \(x+y+z=27\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

 \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)

\(\Leftrightarrow\frac{x-4}{2}=1\Rightarrow x=6\)

\(\Leftrightarrow\frac{y-6}{3}=1\Rightarrow y=9\)

\(\Leftrightarrow\frac{z-8}{4}=1\Rightarrow z=12\)

Vậy x = 6 ; y = 9 ; z = 12

11 tháng 8 2016

\(\frac{x}{2}-2=\frac{y}{3}-2=\frac{z}{4}-2\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\Rightarrow x=6,y=9,z=12\)

11 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:

\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)

Ta có:\(\frac{x-4}{2}=1\Rightarrow x=6\)

\(\frac{y-6}{3}=1\Rightarrow y=9\)

\(\frac{z-8}{4}=1\Rightarrow z=12\)

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin
31 tháng 8 2015

d) \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=> \(\frac{y+z-x}{4+6-2}=\frac{8}{8}=1\)

=> \(\frac{x}{2}=1\Rightarrow x=2\)

=> \(\frac{y}{4}=1\Rightarrow y=4\)

=> \(\frac{z}{6}=1\Rightarrow z=6\)

31 tháng 8 2015

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow x=y.\frac{3}{4}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow z=y.\frac{8}{6}=y.\frac{4}{3}\)

=> \(3x-2y-z=y.3.\frac{3}{4}-2y-y.\frac{4}{3}=13\)

=> \(y.\frac{9}{4}-2y-y.\frac{4}{3}=y.\left(\frac{9}{4}-2-\frac{4}{3}\right)=13\)

=> \(y.\frac{-13}{12}=13\)

\(y=13:\frac{-13}{12}\)

\(y=-12\)

=> \(x=y.\frac{3}{4}=-9\)

=> \(z=y.\frac{4}{3}=-16\)

3 tháng 10 2018

b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) = \(\dfrac{x+y+z}{2+3+5}=\dfrac{-90}{10}=-9\)

\(\dfrac{x}{2}=-9\) => x= -18

\(\dfrac{y}{3}=-9\) => y = -27

\(\dfrac{z}{5}=-9\) => z = -45

3 tháng 10 2018

a) \(4x=5y\) <=> \(x=\dfrac{5y}{4}\)

\(3\cdot\dfrac{5y}{4}-2y=35\)

=> y = 20

=> x = \(\dfrac{5\cdot20}{4}\)=25

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

4 tháng 10 2019

a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)

\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)

\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)

Vậy ...

b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được:

\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)

\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)

\(\Leftrightarrow-26k^2=-650\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow k=\pm5\)

TH1: Thay k=5 vào (2) ta được:

\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)

TH2: Thay k=-5 vào (2) ta được:

\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)