Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
\(\frac{1}{x^2+4x+3}=\frac{1}{\left(x+1\right)\left(x+3\right)}=\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}\right)\)
\(\frac{1}{x^2+8x+15}=\frac{1}{\left(x+3\right)\left(x+5\right)}=\frac{1}{2}\left(\frac{1}{x+3}-\frac{1}{x+5}\right)\)
...
Cộng theo vế các hạng tử sẽ bị triệt tiêu
\(\Leftrightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}=\frac{1}{5}\)
\(\Rightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}-\frac{1}{5}=0\)
\(\Leftrightarrow-\frac{x^2+10x-11}{5\left(x+1\right)\left(x+9\right)}=0\)
=>x2+10x-11=0
102-(-4(1.11))=144
\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-10\pm\sqrt{144}}{2}\)
x1=[(-10)+12]:2=1
x2=[(-10)-12]:2=-11
tổng nghiệm của pt là 1+(-11)=-10
Ta có :
\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)
\(\Leftrightarrow x\ge12\)
và \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow x< 13\) \(x\in Z\)
\(\Rightarrow x=12\)
Theo đề bài ta có: \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}-\frac{x-4}{5}-\frac{x-5}{6}>0\)
=> \(\frac{x-1}{2}+1+\frac{x-2}{3}+1+\frac{x-3}{4}+1-\left(\frac{x-4}{5}+1\right)-\left(\frac{x-5}{6}+1\right)>1\)
<=> \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}>1\)
<=>\(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>1\)
<=> \(\left(x+1\right)\cdot\frac{43}{60}>1\)
<=>\(x+1>\frac{60}{43}\)
<=> x>\(\frac{17}{43}\)
Vậy x>17/43