Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
x+y+y+z+z+x=\(\frac{13}{12}\)
2(x+y+z)=\(\frac{13}{12}\)
=>x+y+z=\(\frac{13}{24}\)
z=(x+y+z)-(x+y)
y=y+z-z
x=x+Y-y
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
1) \(\left(x-1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}\right)=0\)
mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}\ne0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
2) \(\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-5}{95}-1=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{95}=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
x - 100 = 1
x = 101
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+2}{98}+\frac{x+4}{96}+\frac{x+6}{94}\)
\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{94}+1\right)\)
\(\left(\frac{x+1}{99}+\frac{99}{99}\right)+\left(\frac{x+3}{97}+\frac{97}{97}\right)+\left(\frac{x+5}{95}+\frac{95}{95}\right)=\left(\frac{x+2}{98}+\frac{98}{98}\right)+\left(\frac{x+4}{96}+\frac{96}{96}\right)+\left(\frac{\left(x+6\right)}{94}+\frac{94}{94}\right)\)
\(\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{92}+\frac{x+100}{94}+\frac{x+100}{96}\)
\(\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}-\frac{x+100}{92}-\frac{x+100}{94}-\frac{x+100}{96}=0\)
\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{92}-\frac{1}{94}-\frac{1}{96}\right)=0\)
\(Mà\) \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{92}-\frac{1}{94}-\frac{1}{96}\ne0\)
Nên x+ 100 = 0
x = 0 - 100 = -100
Vậy x= -100
cộng 1 vào mỗi tỉ số,ta được:
\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{94}+1\right)\)\(\Rightarrow\frac{x+1+99}{99}+\frac{x+3+97}{97}+\frac{x+5+95}{95}=\frac{x+2+98}{98}+\frac{x+4+96}{96}+\frac{x+6+94}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{98}+\frac{x+100}{96}+\frac{x+100}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}-\frac{x+100}{98}-\frac{x+100}{96}-\frac{x+100}{94}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\right)\)
Vì \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\ne0\)
=>x+100=0
=>x=-100
Vậy x=-100
\(17.8+51.4=34.4+51.4=4\left(51+34\right)=4.84=336\) \(2.2.3.5.19=\left(2.5\right).\left(3.19\right).2=10.2.57=570.2=1140\) \(54.275+825.15+275=54.275+45.275+275=275\left(54+45+1\right)=100.275=27500\) \(\frac{167.198+98}{198.168-100}=\frac{167.198+98}{198.167+198-100}=\frac{167.198+98}{167.198+98}=1\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
a) 17 x 8 + 51 x 4
= 17 x 4 x 2 + 17 x 3 x 4
= 17 x 4 x ( 2 + 3 )
= 14 x 4 x 5
= 14 x 20
= 280
b) 2 x 2 x 3 x 5 x 19
= ( 2 x 5 ) x ( 3 x 19 ) x 2
= 10 x 57 x 2
= 570 x 2
= 1140
c) 54 x 275 + 825 x 15 + 275
= 54 x 275 + 275 x 3 x 15 + 275 x 1
= 54 x 275 + 275 x 45 + 275 x 1
= 275 x ( 54 + 45 + 1 )
= 275 x 100
= 27500
d) 100 - 99 + 98 - 97 + 96 - 95 + 94 - 93 + ... + 4 - 3 + 2
= (100 - 99) + (98 - 97) + (96 - 95) + (94 - 93) + ... + (4 - 3) + 2
= (1 + 1 + ... + 1) + 2
( 49 số 1 )
= 49 + 2
= 51
k) 1,5 + 2,5 + 3,5 + 4,5 + 5,5 + 6,5 + 7,5 + 8,5
= ( 1,5 + 8,5 ) + ( 2,5 + 7,5 ) + ( 3,5 + 6,5 ) + ( 4,5 + 5,5 )
= 10 + 10 + 10 + 10
= 40
Lời giải:
** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$
$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$
$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$
$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)
\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+4}{96}+\frac{x+1}{99}=-4\)
\(\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+1}{99}+1\right)=-4+4\)
\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{96}+\frac{x+100}{99}=0\)
\(\left(x+100\right).\left(\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}\right)=0\)
=> \(\orbr{\begin{cases}x+100=0\\\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}=0\end{cases}}\)
Mà \(\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}\ne0\)
=> x + 100 = 0
=> x = -100
Vậy x = -100
Câu b trừ mỗi số đi 1 tức là trừ cả cụm đó cho 3 rùi lm tương tự câu a
\(\frac{1}{95}\frac{1}{95}\)
là sao ???
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2765070}{921690}+\frac{9310}{921690}+\frac{9405}{921690}+\frac{9702}{921690}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2793487}{921690}\)
\(BCNN\left(99,98,95\right)=921690\Rightarrow x=101\)