Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
Đặt biểu thức trên bằng A. ĐK: \(x\ge0;x\ne1\)
\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}:\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}\left(1-\sqrt{x}\right)}=\frac{1+\sqrt{x}}{2\sqrt{x}-2x}\)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Dk: \(\orbr{\begin{cases}x\ne\frac{3}{2}\\x\ne-1\end{cases}}\)
\(\frac{\left(x-1\right)}{2x-3}=\frac{\left(1-3x\right)}{\sqrt{\left(x+1\right)^2}}=\frac{\left(1-3x\right)}{!x+1!}\)
\(x\ge1\)
\(\left(x-1\right)\left(x+1\right)=\left(1-3x\right)\left(2x-3\right)\)
x^2-1=11x-6x^2-3
7x^2-11x+2=0
\(\orbr{\begin{cases}x_{ }_{ }_1=\frac{11-\sqrt{65}}{14}< 1\left(loai\right)\\x_2=\frac{11+\sqrt{65}}{14}\left(nhan\right)\end{cases}}\)
\(x< 1\)
-(x^2-1)=11x-6x^2-3
5x^2-11x+4=0
\(\orbr{\begin{cases}x_1=\frac{5-\sqrt{41}}{10}_{ }\left(nhan\right)\\x_2=\frac{5+\sqrt{41}}{10}\left(loai\right)\end{cases}}\)
cảm ơn bạn