Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)
M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu
a,
\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
b,
\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)
\(=\left(a-b\right)2b=2ab-2b^2\)
a) ĐK: a > 0; b > 0
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)
\(=\frac{\sqrt{a}+\sqrt{b}+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}-b\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)-b\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}-b\)
\(=2\sqrt{b}-b\)
b) \(A=1\)\(\Rightarrow\)\(2\sqrt{b}-b=1\)
\(\Leftrightarrow\)\(b-2\sqrt{b}+1=0\)
\(\Leftrightarrow\) \(\left(\sqrt{b}-1\right)^2=0\)
\(\Leftrightarrow\)\(\sqrt{b}-1=0\)
\(\Leftrightarrow\)\(\sqrt{b}=1\)
\(\Leftrightarrow\)\(b=1\) (t/m ĐKXĐ)
Vậy b=1
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a+2\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=2\sqrt{b}\)
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
\(D=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{-b+\sqrt{a}.\sqrt{b}}{\sqrt{b}}\)
\(D=\frac{\left[\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}\right].\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right).\sqrt{b}}-\frac{\left(\sqrt{a}.\sqrt{b}-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{\left[\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}\right]-\left(\sqrt{a}.\sqrt{b}-b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{2b.\sqrt{a}+2b.\sqrt{b}}{\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=\frac{2b.\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}\)
\(D=2\sqrt{b}\)