K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Đặt \(A=\frac{4n+3}{7n+1}-\frac{3n-2}{7n+1}+\frac{2n-3}{7n+1}\) ta có : 

\(A=\frac{4n+3-3n+2+2n-3}{7n+1}\)

\(A=\frac{3n+2}{7n+1}\)

Vậy \(A=\frac{3n+2}{7n+1}\)

Chúc bạn học tốt ~ 

8 tháng 4 2018

(4n+3-(3n-2)+(2n-3))/7n+1

(4n+3-3n+2+2n-3)/7n+1

=(3n-2)/7n+1

1 tháng 11 2018

a) ta có: 1 -3n chia hết cho 2n +1

=> 2 - 6n chia hết cho 2n +1

=> 5 - 3 - 6n chia hết cho 2n +1

5 - 3.(1+2n) chia hết cho 2n + 1

...

bn tự làm tiếp đk r

b) ta có: 2-7n chia hết cho 2n + 5

=> 4 - 14n chia hết cho 2n + 5

=> 39 - 35 - 14n chia hết cho 2n + 5

39 - 7.(5+2n) chia hết cho 2n +5

...

c) ta có: 4n + 9 chia hết cho 3n + 1

=> 12n + 27 chia hết cho 3n + 1

12n + 4+23 chia hét cho 3n + 1

4.(3n+1) + 23 chia hết cho 3n + 1

...

1 tháng 11 2018

d) ta có: n^2 + 2n + 7 chia hết cho n+2

=> n.(n+2) + 7 chia hết cho n + 2

....

e) ta có: n^2 + n + 1 chia hết cho n + 1

=> n.(n+1) + 1 chia hết cho n + 1

...

25 tháng 10 2016

đề kiểu gì mà nhiều vậy pạn

kiểu vậy làm mệt lắm

25 tháng 10 2016

co minh giao do

2 tháng 11 2017

\(\left(n-5\right)⋮\left(n-2\right)\)

=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)

=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)

=> \(-3⋮\left(n-2\right)\)

=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }

ta có bảng sau

n-2 -1 1 -3

3

n 1 3 -1 5
tm tm loại tm

vậy n\(\in\left\{1;3;5\right\}\)

5 tháng 12 2017
Minh quen cach lam roi
28 tháng 1 2016

1) 4n - 3 chia hết cho 2n + 1

4n + 2 - 5 chia hết cho 2n + 1

5 chia hết cho 2n + 1

2n + 1 thuộc U(5) = {-5;-1;1;5}

n thuộc {-3 ; -1 ; 0 ; 2}

 

Nguyễn Ngọc Quý trở lại òi à

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm