K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

<=> \(\left(\frac{1}{3\cdot5}+\frac{1}{5.7}+...+\frac{1}{13\cdot15}\right)+x=\frac{17}{15}\)

<=> \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=>\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=> \(\frac{2}{15}+x=\frac{17}{15}\)

=> x = 1

18 tháng 8 2017

(1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)+x=17/15

[2.(1/3-1/5+1/5-1/7+...+1/13-1/15)]+x=17/15

[2.(1/3-1/15)]+x=17/15

(2.4/15)+x=17/15

6/15+x=17/15

x=17/15-6/15

x=11/15

9 tháng 7 2016

\(\Rightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{99.101}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{88}{303}\)

\(\Rightarrow A=\frac{44}{303}\)

9 tháng 7 2016

\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)

\(\Rightarrow2A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

=> A = 98/203 : 2 = 49/303

8 tháng 1 2016

Có ngu thì đi bệnh viện đi!

8 tháng 1 2016

Có khôn thì đi bệnh viện đi!

3 tháng 7 2017

=> 2(1/15+1/35+1/63+1/99)x=2

=>(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)x=2

=>8/33x=2

=>x=2:8/33

=>x=8,25

3 tháng 7 2017

\(\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\cdot x=1\)

\(\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right)\cdot x=1\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\right]\cdot x=1\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\right]\cdot x=1\)

\(\left[\frac{1}{2}\cdot\frac{8}{33}\right]\cdot x=1\)

\(\frac{4}{33}\cdot x=1\)

\(\Rightarrow x=\frac{1}{\frac{4}{33}}=\frac{33}{4}\)

14 tháng 7 2016

\(2B=\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{9.11}\)

\(2B=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(2B=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)

\(B=\frac{10}{11}:2=\frac{10}{11}.\frac{1}{2}=\frac{5}{11}\)

\(B=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

1 tháng 6 2018

Dấu \(.\)là dấu nhân 

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{2}.\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\frac{14}{15}\)

\(=\frac{7}{15}\)

~ Ủng hộ nhé 

Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

Suy ra ; \(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}=\frac{14}{15}\)

=> A = \(\frac{14}{15}:2=\frac{14}{15}.\frac{1}{2}=\frac{7}{15}\)

25 tháng 1 2016

A=1/3.5+1/5.7+1/7.9+...+1/99.101

2A= 2/3.5+2/5.7+2/7.9+...+2/99.101

2A= 1/3-1/5+1/5-1/7-1/7+1/7-1/9+...+1/99-1/101

2A=1/3-1/101=98/303

A=(98/303)/2=49/303

 

5 tháng 1 2016

\(A=1/3.5+1/5.7+1/7.9+…+1/99.101\)

A.2=2/3.5+2/5.7+2/7.9+…+2/99.101

A.2=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101

Vậy

A.2=1/3-1/101=98/303

A=98/303/2=49/303

Đúng không

4 tháng 1 2016

A = 1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999

   = 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + ... + 1/99x101

A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + ... + 2/99x101

         = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/99 - 1/101

         = 1/3 - 1/101 = 98/303

Vậy A = 98/303 : 2 = 49/303

22 tháng 6 2017

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\cdot\frac{8}{33}\)

\(=\frac{52}{33}\)

22 tháng 6 2017

a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99

A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)

A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)

A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)

A= 13/2 ( 1/3 - 1/11) 

A= 13/2 . 8/33

A= 52/33