\(\dfrac{x}{2020}+\dfrac{x+1}{2021}+\dfrac{x+2}{2022}+\dfrac{x+3}{2023}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2024

\(\dfrac{x}{2020}\) + \(\dfrac{x+1}{2021}\) + \(\dfrac{x+2}{2022}\) + \(\dfrac{x+3}{2023}\) = 4

\(\dfrac{x}{2020}\) + \(\dfrac{x+1}{2021}\) + \(\dfrac{x+2}{2022}\) + \(\dfrac{x+3}{2023}\) - 4  = 0

(\(\dfrac{x}{2020}\) - 1) + (\(\dfrac{x+1}{2021}\) - 1) + (\(\dfrac{x+2}{2022}\) - 1) + (\(\dfrac{x+3}{2023}\) - 1) = 0

\(\dfrac{x-2020}{2020}\) + \(\dfrac{x-2020}{2021}\) + \(\dfrac{x-2020}{2022}\) + \(\dfrac{x-2020}{2024}\) = 0

\(\left(x-2020\right)\).(\(\dfrac{1}{2020}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2024}\)) = 0

\(x\) - 2020 = 0

\(x\)            = 2020 

Vậy \(x=2020\)

3 tháng 4 2023

\(\dfrac{x-1}{2023}+\dfrac{x-2}{2022}=\dfrac{x-3}{2021}+\dfrac{x-4}{2020}\)

`<=>(x-1)/2023-1+(x-2)/2022-1=(x-3)/2021-1+(x-4)/2020-1`

`<=>(x-2024)/2023+(x-2024)/2022=(x-2024)/2021+(x-2024)/2020`

`<=>(x-2024)(1/2023+1/2022-1/2021-1/2020)=0`

`<=>x-2024=0(1/2023+1/2022-1/2021-1/2020>0)`

`<=>x=2024`

=>\(\left(\dfrac{x-1}{2023}-1\right)+\left(\dfrac{x-2}{2022}-1\right)=\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-4}{2020}-1\right)\)

=>x-2024=0

=>x=2024

13 tháng 12 2022

Cứu với ;-;

25 tháng 3 2021

Câu 2 

1, a, \(x^2+9xy+8y^2-8y-x=x^2+xy+8xy+8y^2-\left(8y+x\right)\)

\(=\left(x+y\right)\left(8y+x\right)-\left(8y+x\right)=\left(8y+x\right)\left(x+y-1\right)\)

b, \(x^3+5x-6=x^3-x^2+x^2-x+6x-6\)

\(=x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x^2+x+6\right)\)

 

Câu 2:

b) \(x^3+5x-6=x^3+x^2+6x-x^2-x-6\)         \(=x\left(x^2+x+6\right)-\left(x^2+x+6\right)\) \(=\left(x-1\right)\left(x^2+x+6\right)\) 

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

Giải các phương trình có chứa ẩn ở mẫu sau: a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\) b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\) d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\) f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\) g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\) h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\) i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\) j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\) k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\) l,...
Đọc tiếp

Giải các phương trình có chứa ẩn ở mẫu sau:

a, \(\dfrac{x-3}{x-2}+\dfrac{x+2}{x}=2\)

b, \(\left(x-2\right)\left(\dfrac{2}{3}x-6\right)=0\)

d, \(\dfrac{x}{x+1}-\dfrac{2x-3}{x-1}=\dfrac{2x+3}{x^2-1}\)

f, \(\dfrac{x-1}{x}+\dfrac{x-2}{x+1}=2\)

g, \(\dfrac{x}{x-1}+\dfrac{x-1}{x}=2\)

h, \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

i, \(\dfrac{2}{x+1}-\dfrac{3}{x-1}=5\)

j, \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)

k, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x-3}=1\)

l, \(\dfrac{2}{x+1}-\dfrac{1}{xx-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

m, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

n, \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

o, \(\dfrac{x-2}{x+2}+\dfrac{3}{x-2}=\dfrac{x^2-11}{x^2-4}\)

p, \(\dfrac{x+4}{x+1}+\dfrac{x}{x-1}=\dfrac{2x^2}{x^2-1}\)

z, \(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

q, \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

r, \(\dfrac{1}{x-3}+2=\dfrac{5}{x-1}+x\)

s, \(\dfrac{2}{x^2+4x-21}=\dfrac{3}{x-3}\)

3
30 tháng 4 2018

4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)

ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)

\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)

\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)

S=\(\left\{1\right\}\)

30 tháng 4 2018

mấy bài còn lại dễ ẹt cứ bình tĩnh làm là ok

Câu 1: 

1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{7}{x^2+3}\)

NV
3 tháng 4 2021

Câu 2a đề sai, pt này ko giải được

2b.

\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)

Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)

\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)

3a.

\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)

\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)

3b

Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6

\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)

Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)

\(\Rightarrow2021^{2022}-1⋮6\)

\(\Rightarrow S-1⋮6\)

28 tháng 4 2018

câu nào cũng ghi lại đề nha

a) \(x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b)\(x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)

28 tháng 4 2018

d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)

\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )

\(\Leftrightarrow4x-8=0\Rightarrow x=2\)

đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)

\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))

\(\Leftrightarrow8-x-8x+56-1=0\)

\(\Leftrightarrow-9x+63=0\)

\(\Leftrightarrow x=7\)

a: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{x^2+2x+1}=\dfrac{4x}{x^2+2x+1}\)

b: \(=\dfrac{x+2}{-\left(x-2\right)}\cdot\dfrac{\left(x-2\right)^2}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{x^2-2x+4}{2-x}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\left(\dfrac{2}{2-x}-\dfrac{4}{\left(x+2\right)\left(2-x\right)}\right)\)

\(=\dfrac{-\left(x+2\right)\left(x-2\right)}{4x^2}\cdot\dfrac{2x+4-4}{\left(2-x\right)\left(x+2\right)}\)

\(=\dfrac{2x}{4x^2}=\dfrac{1}{2x}\)

10 tháng 2 2019

a. \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{9}{x^2-9}\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=9\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=9\)

\(\Leftrightarrow12x=9\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

\(\Rightarrow S=\left\{\dfrac{3}{4}\right\}\)

b. \(\dfrac{x+2}{4}-x+3=\dfrac{1-x}{8}\)

\(\Leftrightarrow2\left(x+2\right)-8\left(x-3\right)=1-x\)

\(\Leftrightarrow2x+4-8x+24=1-x\)

\(\Leftrightarrow2x-8x+x=1-4-24\)

\(\Leftrightarrow-3x=-27\Leftrightarrow x=9\)

\(\Rightarrow S=\left\{9\right\}\)

-Mệt -.-