K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài cơ bản mà !

mẫu =0 có 2 nghiệm

x=2, x=-1 là 2 đường tc đứng

bật tử bé hơn bật mẫu => có tiệm cận ngang y=0

17 tháng 1 2018

sorry bạn nhé. bạn nhẩm nghiệm sai rồi :)

nghiệm là \(\dfrac{3\pm\sqrt{17}}{2}\) bạn nhé. và nếu như mẫu có nghiệm là x= -1 thì bạn sẽ phải ;oại nghiệm này vì nó cũng là nghiệm của tử = 0 thì lim của nó sẽ k tiến đến vô cùng bạn nhé nên x=-1 k phải là tiệm cận đứng

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{1}{x^3}-\dfrac{1}{x^4}}}{1-\dfrac{3}{x}+\dfrac{2}{x^2}}=0\)

\(\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x-1}\left(x-2\right)}=\infty\)

\(\Rightarrow x=1\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\dfrac{1}{0}=\infty\)

\(\Rightarrow x=2\) là tiệm cận đứng

ĐTHS có 1 TCN và 2 TCĐ

31 tháng 3 2017

a) Vì ( hoặc ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.

nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.

b) Hai tiệm cận đứng : ; tiệm cận ngang : .

c) Tiệm cận đứng : x = -1 ;

nên đồ thị hàm số không có tiệm cận ngang.

d) Hàm số xác định khi :

( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.

31 tháng 3 2017

Hỏi đáp Toán

20 tháng 10 2017

\(x\rightarrow\mp\infty\) lim \(\dfrac{3x-2}{2x-3}=\dfrac{3}{2}\Rightarrow y=\dfrac{3}{2}\) là đường tiệm cận ngang của đồ thị hàm số

\(x\rightarrow\dfrac{3^-}{2}\)lim \(\dfrac{3x-2}{2x-3}=+\infty\Rightarrow x=\dfrac{3}{2}\) là tiệm cận đứng của đồ thị hàm số

AH
Akai Haruma
Giáo viên
20 tháng 10 2017

Lời giải:

Ta có: \(\lim_{x\mapsto +\infty}\frac{3x-2}{2x-3}=\frac{3}{2}=\lim_{x\mapsto +\infty}\frac{3-\frac{2}{x}}{2-\frac{3}{x}}=\frac{3}{2}\)

\(\Rightarrow y=\frac{3}{2}\)là tiệm cận ngang

Có: \(\lim _{x\mapsto \frac{3}{2}^+}y=\lim_{x\mapsto \frac{3}{2}^+}\frac{3x-2}{2x-3}=+\infty\) nên \(x=\frac{3}{2}\) là tiệm cận đứng

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang

\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)

\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy ĐTHS có 4 tiệm cận

4 tháng 9 2021

tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2-    ở dưới mẫu lại bằng 0 vậy  ạ?