K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)

\(\left(\dfrac{x+1}{2015}+1\right)+\left(\dfrac{x+2}{2014}+1\right)+\left(\dfrac{x+3}{2013}+1\right)=0\)

\(\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)

\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow x+2016=0\Rightarrow x=-2016\)

6 tháng 7 2017

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}=-3\)

\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1+\dfrac{x+3}{2013}+1=0\)

\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}=0\)

\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}\right)=0\)

\(\Rightarrow x+2016=0\Rightarrow x=-2016\)

Chúc bạn học tốt!!!

11 tháng 8 2017

\(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+4}{2012}+1+\dfrac{x+3}{2013}+1=\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}=\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}-\left(\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\right)=0\)

\(\Leftrightarrow x+2016.\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\right)\)

\(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\ne0\)

\(\Rightarrow x+2016=0\)

\(\Rightarrow x=-2016\)

Vậy \(x=-2016\) tại biểu thức \(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

11 tháng 8 2017

Theo đề ta có: x+4/2012+x+3/2013=x+2/2014+x+1/2015
=>x+4/2012+x+3/2013-x+2/2014+x+1/2015=0
=>( x+4/2012+1)+(x+3/2013+1)-(x+2/2014+1)+(x+1/2015+1)
=>x+2016/2012+x+2016/2013-x+2016/2014-x+2016/2015=0
=>x+2016.(1/2012+1/2013-1/2014-1/2015)=0
Do 1/2012+1/2013-1/2014-1/2015>0
nên x+2016=0
=>x=-2016
Vậy x=-2016

1 tháng 3 2018

x =0 nhé bn

1 tháng 3 2018
\(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\) <=>\(\dfrac{x+1}{2016}+1+\dfrac{x+2}{2015}+1=\dfrac{x+3}{2014}+1+\dfrac{x+4}{2013}+1\) <=>

\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)

<=>\(\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)

<=>(x+2017)(1/2016+1/2015-1/2014-1/2013)=0

vì 1/2016+1/2015-1/2014-1/2013 khác 0

nên x+2017=0<=>x=-2017

vậy................

chúc bạn học tốt ^^

8 tháng 10 2017

. Đây nha

20 tháng 9 2017

a/ \(\left(4x-5\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy ............

b/ \(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x+2}{2015}+1\right)=\left(\dfrac{x+3}{2014}+1\right)+\left(\dfrac{x+4}{2013}+1\right)\)

\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)

\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)

\(\Leftrightarrow x+2017\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)

\(\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\)

Vậy ..

20 tháng 9 2017

\(\left(4x-5\right)\left(3x+2\right)=0\)

\(\)\(\Rightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

\(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)

\(\Rightarrow\dfrac{x+1}{2016}+1+\dfrac{x+2}{2015}+1=\dfrac{x+3}{2014}+1+\dfrac{x+4}{2013}+1\)

\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)

\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)

\(\Rightarrow\left(x+2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)

Nên:

\(x+2017=0\Rightarrow x=-2017\)

16 tháng 11 2017

Ta có : \(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}=4\)

\(\dfrac{x-3}{2015}+\dfrac{x-4}{2014}+\dfrac{x-5}{2013}+\dfrac{x-6}{2012}-4=0\)

\(\dfrac{x-3}{2015}-1+\dfrac{x-4}{2014}-1+\dfrac{x-5}{2013}-1+\dfrac{x-6}{2012}-1=0\)

\(\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}+\dfrac{x-2018}{2013}+\dfrac{x-2018}{2012}=0\)

\(\left(x-2018\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}>0\)

=> x - 2018 = 0

x = 0 + 2018

x = 2018

Vậy x = 2018

6 tháng 8 2017

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{2}{2012}+\dfrac{1}{2013}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{2}{2012}\right)+\left(1+\dfrac{1}{2013}\right)+1\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2012}+\dfrac{2014}{2013}+\dfrac{2014}{2014}\)

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)\)

\(\Leftrightarrow x=\dfrac{2014.\left(\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}}\)

\(\Leftrightarrow x=2014\)

Vậy \(x=2014\)

6 tháng 8 2017

\(VP=\dfrac{2013}{1}+\dfrac{2012}{2}+...+\dfrac{1}{2013}\\ =\dfrac{2012}{2}+1+\dfrac{2011}{3}+1+...+\dfrac{1}{2013}+1+1\\ =\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}+\dfrac{2014}{2014}\\ =2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\)

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)x=2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}\right)\\ x=2014\)

Vậy x = 2014