Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\) \(\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Do \(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\)
\(\Rightarrow2b+c-a+a=3a\)
\(\Rightarrow2b+c=3a\Rightarrow3a-2b=c\)
Lại do \(\dfrac{2c-b+a}{b}=2\) \(\Rightarrow2c-b+a=2b\)
\(\Rightarrow2c+a-3b=0\)
\(\Rightarrow3b-2c=a\)
Ta lại có \(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\)
\(\Rightarrow2a+b-c+c=3c\)
\(\Rightarrow2a +b=3c\)
\(\Rightarrow3c-2a=b\)
Khi đó:
\(P=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\) (đoạn này mk làm hơi tắt, nếu không hiểu thì nói mk nhé!)
Vậy \(P=\dfrac{1}{8}.\)
Chú ý: Ở tử của p/s phải là 3a \(-2b\) mới làm được bài này.
Ta có: \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\dfrac{2b+c-a}{a}=2\Leftrightarrow2b+c-a=2a\Leftrightarrow2b+c=3a\Leftrightarrow c=3a-2b\)
Và : \(2b+c=3a\Leftrightarrow2b=3a-c\)
Tương tự: \(3b-2c=a\) và \(2c=3b-a\)
\(3c-2a=b\) và \(2a=3c-b\)
Thay vào Q, ta được:
\(Q=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2b+c-a}{a}=\frac{2c+a-b}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}\)
\(=\frac{2(a+b+c)}{a+b+c}=2\)
Do đó: \(\left\{\begin{matrix} 2b+c-a=2a\\ 2c+a-b=2b\\ 2a+b-c=2c\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\) và \(\left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\)
Suy ra: \(P=\frac{(3a-2b)(3b-2c)(3c-2a)}{(3a-c)(3b-a)(3c-b)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)<=>\(\dfrac{2b+c}{a}-1=\dfrac{2c+a}{b}-1=\dfrac{2a+b}{c}-1\)
<=>\(\dfrac{2b+c}{a}=\dfrac{2c+a}{b}=\dfrac{2a+b}{c}=\dfrac{2b+c+2c+a+2a+b}{a+b+c}=\dfrac{3\left(a+b+c\right)}{a+b+c}=3\)=>\(\left\{{}\begin{matrix}2b+c=3a\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3a-c=2b\end{matrix}\right.\\2c+a=3b\Rightarrow\left\{{}\begin{matrix}3b-2c=a\\3b-a=2c\end{matrix}\right.\\2a+b=3c\Rightarrow\left\{{}\begin{matrix}3c-2a=b\\3c-b=2a\end{matrix}\right.\end{matrix}\right.\) thay vào
\(P=\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\dfrac{c.a.b}{2b.2c.2a}=\dfrac{1}{8}\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a2a+b-c}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2\)
\(\left\{\begin{matrix} 2b+c-a=2a\\ 2c-b+a=2b\\ 2a+b-c=2c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2b+c=3a\\ 2c+a=3b\\ 2a+b=3c\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} c=3a-2b\\ a=3b-2c\\ b=3c-2a\end{matrix}\right.\Rightarrow (3a-2b)(3b-2c)(3c-2a)=abc\) (1)
Và \(\left\{\begin{matrix} 2b=3a-c\\ 2c=3b-a\\ 2a=3c-b\end{matrix}\right.\Rightarrow (3a-c)(3b-a)(3c-b)=8abc\) (2)
Từ (1),(2) suy ra \(M=\frac{abc}{8abc}=\frac{1}{8}\)
Vì \(a;b;c>0\) nên \(a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2b+c-a}{a}=\dfrac{2c+a-b}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2b+c=3a\Leftrightarrow3a-2b=c\\2c+a=3b\Leftrightarrow3b-2c=a\\2a+b=3c\Leftrightarrow3c-2a=b\end{matrix}\right.\)
Khi đó: \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{abc}=\dfrac{abc}{abc}=1\)
a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)
Áp dụng tỉ lệ thức ta có :
\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)
b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)
Áp dụng tỉ lệ thức ta có "
\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Các câu còn lại bạn làm tương tự
Tham khảo thêm thôi chứ mình không chắc nhé! dạng này mình chưa từng gặp (hay có gặp nhưng rất ít). Thôi không dài dòng nữa. Vào bài thôi.
Giải
Theo t/c dãy tỉ số bằng nhau: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{2b+3c+2c+3a+2a+3b}\)
\(=\dfrac{a+b+c}{\left(2b+3b\right)+\left(2c+3c\right)+\left(2a+3a\right)}=\dfrac{a+b+c}{5b+5c+5a}\) (*)
Từ (*) ta có: \(\dfrac{a}{2b+3c}=\dfrac{b}{2c+3a}=\dfrac{c}{2a+3b}=\dfrac{a+b+c}{5b+5c+5a}=\dfrac{1}{5}\)
Vì: \(5.\dfrac{a}{2b+3c}=5.\dfrac{b}{2c+3a}=5.\dfrac{c}{2a+3b}=\dfrac{5a+5b+5c}{5b+5c+5a}=1\)
Mà \(1:5=\dfrac{1}{5}\)
\(\Leftrightarrow5a\left(2b+3c\right)=5b\left(2c+3a\right)=5c\left(2a+3b\right)\)
\(\Leftrightarrow10ab+15ac=10bc+15ba=10ca+15cb\Leftrightarrow a=b=c^{\left(đpcm\right)}\)
Giải chi tiết giúp mình nha!