Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.5^4.4^4}{\left(5^2\right)^5.4^5}=\dfrac{5^8.4^4}{5^{10}.4^5}=\dfrac{1}{5^2.4}=\dfrac{1}{25.4}=\dfrac{1}{100}=0,01\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.\left(4.5\right)^4}{\left(5.5\right)^5.4^5}=\dfrac{5^4.4^4.5^4}{5^5.5^5.4^5}=\dfrac{1}{5.5.4}=\dfrac{1}{100}\)
\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{\left(5\cdot20\right)^4}{\left(25\cdot4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.\left(4.5\right)^4}{25^5.4^5}=\dfrac{5^4.4^4.5^4}{25^5.4^5}=\dfrac{\left(5^4.5^4\right).4^4}{25^5.4^5}=\dfrac{25^4.4^4}{25^5.4^5}=\dfrac{1.1}{25.4}=\dfrac{1}{100}\)
a: \(=\dfrac{5^4\cdot5^4\cdot2^8}{5^{10}\cdot2^{10}}=\dfrac{1}{5^2}\cdot\dfrac{1}{2^2}=\dfrac{1}{100}\)
b: \(=\left(\dfrac{12+8-3}{12}\right)\cdot\left(\dfrac{16-15}{20}\right)^2\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
a,\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+0,2\right)\)
\(=-\dfrac{891}{25}:4\)
\(=-\dfrac{891}{100}\)
b,\(\dfrac{5^4.20^4}{25^5.4^5}\)
\(=\dfrac{5^4.20^4}{\left(5^2\right)^5.\left(2^2\right)^5}\)
\(=\dfrac{5^4.20^4}{5^{10}.2^{10}}\)
\(=\dfrac{20^4}{5^6.2^{10}}\)
\(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.\left(5.4\right)^4}{\left(5^2\right)^5.4^5}=\dfrac{5^4.5^4.4^4}{5^{10}.4^5}=\dfrac{1}{5^2.4}=\dfrac{1}{100}\)
a) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
b) \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{-1}{12}\right)^2=\dfrac{1}{144}\)
c) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{\left(5.20\right)^4}{\left(25.4\right)^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
d) \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\dfrac{-10^5}{3^5}.\dfrac{-6^4}{5^4}=\dfrac{-\left(2.5\right)^5.\left(3.2\right)^4}{3^5.5^4}=\dfrac{-29.5}{3}=-853\dfrac{1}{3}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=100^{-1}=\frac{1}{100}\)
\(\dfrac{1}{100}\)