K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2023

\(\dfrac{3}{x-2}=\dfrac{-2}{x-4}\left(dk:x\ne2;x\ne4\right)\)

\(\Rightarrow3\cdot\left(x-4\right)=-2\cdot\left(x-2\right)\)

\(\Rightarrow3x-12=-2x+4\)

\(\Rightarrow3x+2x=4+12\)

\(\Rightarrow5x=16\)

\(\Rightarrow x=\dfrac{16}{5}\left(tm\right)\)

5 tháng 12 2023

\(ĐK:x\ne2;x\ne4\\ Có:\dfrac{3}{x-2}=\dfrac{-2}{x-4}\\ \Leftrightarrow3\left(x-4\right)=-2\left(x-2\right)\\ \Leftrightarrow3x-12=-2x+4\\ \Leftrightarrow3x+2x=4+12\\ \Leftrightarrow5x=16\\ \Leftrightarrow x=\dfrac{16}{5}\left(TM\right)\\ Vậy:x=\dfrac{16}{5}\)

17 tháng 9 2020

a, ( x - 3 ) . ( x - 4 )  = 0              

=> x - 3 = 0 hoặc x - 4 = 0 

Nếu x - 3 = 0 => x = 3 

Nếu x - 4 = 0 => x = 4 

b, (\(\frac{1}{2}\)x  - 4 ) . ( x - \(\frac{1}{4}\)) = 0 

=>(  \(\frac{1}{2}\)x - 4 ) = 0    Hoặc  ( x - \(\frac{1}{4}\)) = 0 

Nếu ( \(\frac{1}{2}\)x - 4 ) = 0  => x = \(\frac{8}{1}\)

Nếu ( x - \(\frac{1}{4}\)) = 0     => x = \(\frac{1}{4}\)

c, (\(\frac{1}{3}\)- x ) . ( \(\frac{1}{2}\)+ 1 : x ) = 0 

=> ( \(\frac{1}{3}\)- x ) = 0 Hoặc ( \(\frac{1}{2}\)+ 1 : x ) = 0

Nếu (\(\frac{1}{3}\)- x ) = 0 => x = \(\frac{1}{3}\)

Nếu ( \(\frac{1}{2}\)+ 1 : x ) = 0 => x = \(\frac{-2}{1}\)

d, ( x + 3 ) . (  x - 4 ) + 2.(x + 3 ) = 0

=> (X + 3 ) = 0 Hoặc  ( x - 4 ) = 0 Hoặc 2. ( x + 3 ) = 0

Nếu x + 3 = 0 => x = 0

Nếu ( x - 4 ) = 0 => x = 4 

Nếu 2.(x + 3) = 0  => x = 3 

# Cụ MAIZ 

17 tháng 9 2020

a. ( x - 3 ) ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

b. \(\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)

<=> \(\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

17 tháng 9 2020

                          Bài làm :

\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Bài làm :

\(a,\left(x-3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b,\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c,\left(\frac{1}{3}-x\right).\left(\frac{1}{2}+1:x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1:x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d,\left(x+3\right)\left(x-4\right)+2\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-4+2\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Học tốt nhé

17 tháng 9 2020

          Bài làm :

\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

4 tháng 7 2019

Lời giải :

Theo đề bài ta có \(\frac{x}{\frac{5}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{6}{5}}\Leftrightarrow\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}\)

Đặt \(\frac{2x}{5}=\frac{3y}{4}=\frac{5z}{6}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5k}{2}\\z=\frac{6k}{5}\end{cases}}\)

Mặt khác : \(\frac{x}{2}=\frac{z-28}{3}\)

\(\Leftrightarrow3x-2z=-56\)

\(\Leftrightarrow3\cdot\frac{5k}{2}-2\cdot\frac{6k}{5}=-56\)

\(\Leftrightarrow k=\frac{-560}{51}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1400}{51}\\y=\frac{-2240}{153}\\z=\frac{-224}{17}\end{cases}}\)

\(B=x+y-z=\frac{-1400}{51}+\frac{-2240}{153}-\frac{-224}{17}=\frac{-4424}{153}\)

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.

22 tháng 9 2020

P/s: Công vào 6 phân thức trên, mỗi phân thức công thêm 1 rồi quy đồng lên ta được:

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

Ta xét: \(\hept{\begin{cases}\frac{1}{2009}< \frac{1}{2000}\\\frac{1}{2008}< \frac{1}{1999}\\\frac{1}{2007}< \frac{1}{1998}\end{cases}}\Rightarrow\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

=> \(x+2010=0\Rightarrow x=-2010\)

Vậy x = -2010

22 tháng 9 2020

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)

\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)

29 tháng 10 2019

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

\(\Rightarrow\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{3y^2}{27}=\frac{z^2}{25}=\frac{x^2+3y^2-z^2}{4+27-25}=\frac{30}{6}=5\)

\(\Rightarrow\)x2=20

         y2=45

         z2=125

29 tháng 10 2019

Áp dụng .......................................

ta được: x/2=y/3=z/5=(x2+3y2-z2)/(22+3*32-52)=30/6=5

Vậy: x=10 

    y=15

    z=25