Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^{15}.9^3}{6^7.4^4}=\dfrac{2^{15}.\left(3^2\right)^3}{3^7.2^7.2^8}=\dfrac{2^{15}.3^6}{3^7.2^{15}}=\dfrac{3^6}{3^7}=\dfrac{1}{3}\)
\(\dfrac{2^{15}.9^3}{6^7.4^4}=\dfrac{2^{15}.3^6}{2^{15}.3^7}=\dfrac{1}{3}\)
4) \(3^{n+2}+3^n=270\)
\(\Rightarrow3^n.3^2+3^n=270\)
\(\Rightarrow3^n.\left(3^2+1\right)=270\)
\(\Rightarrow3^n.\left(9+1\right)=270\)
\(\Rightarrow3^n.10=270\)
\(\Rightarrow3^n=270:10\)
\(\Rightarrow3^n=27\)
\(\Rightarrow3^n=3^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
a/ \(\dfrac{\dfrac{-5}{12}}{\left|\dfrac{2}{3}x+\dfrac{1}{2}\right|}=\dfrac{\dfrac{-4}{9}}{\dfrac{8}{15}}\)
\(\Leftrightarrow\left|\dfrac{2}{3}x+\dfrac{1}{2}\right|.\left(-\dfrac{4}{9}\right)=\left(-\dfrac{5}{12}\right).\left(\dfrac{8}{15}\right)\)
\(\Leftrightarrow\left|\dfrac{2}{3}x+\dfrac{1}{2}\right|.\left(-\dfrac{4}{9}\right)=\dfrac{-2}{9}\)
\(\Leftrightarrow\left|\dfrac{2}{3}x+\dfrac{1}{2}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=\dfrac{1}{2}\\\dfrac{2}{3}x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=0\\\dfrac{2}{3}x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy ....
a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)
\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)
b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)
\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)
c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)
\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)
e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)
\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{2^3.3^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}\) =\(2^3.8^5\)
a. \(-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-180}{7}+\dfrac{-30}{7}+\left(-105\right).\dfrac{1}{105}\)
\(=\dfrac{-180}{7}+\dfrac{-30}{7}+\left(-1\right)\)
\(=-31\)
b. \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=\dfrac{2^{15}.3^6.3^2}{2^{15}.3^6}=3^2=9\)
1: \(5\cdot3^x=5\cdot3^4\)
nên \(3^x=3^4\)
hay x=4
2: \(7\cdot4^x=7\cdot4^3\)
nên \(4^x=4^3\)
hay x=3
3: \(8\cdot7^x=8\cdot7^6\)
nên \(7^x=7^6\)
hay x=6
\(\dfrac{2^{15}.9^3}{6^7.4^4}\\ =\dfrac{2^{15}.3^9}{3^7.2^7.2^8}\\ =\dfrac{2^{15}.3^9}{3^7.2^{15}}\\ =\dfrac{3^9}{3^7}\\ =3^2\\ =9\)
1/3