Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)
\(A=\dfrac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\dfrac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)
\(=\dfrac{x+3}{\sqrt{x}+3}\)
C=\(\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)
=\(\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{\frac{2}{x}-1}\)=\(\frac{2\sqrt{x-2}}{\frac{2}{x}-1}\)=\(\frac{-2x}{\sqrt{x-2}}\)
6\(C=\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\) Điều kiện xác định :\(\hept{\begin{cases}x>2\\x\ne6\end{cases}}\)
\(=\frac{\sqrt{x-2-4\sqrt{x-2}+4}+\sqrt{x-2+4\sqrt{x-2}+4}}{\sqrt{\left(\frac{2}{x}-1\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}}{\left|\frac{2}{x}-1\right|}\)
\(=\frac{\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}+2\right|}{\left|\frac{2}{x}-1\right|}\)
-Vì x>2 nên \(\frac{2}{x}< \frac{2}{2}=1\)\(\Rightarrow\frac{2}{x}-1< 0\)
\(\sqrt{x-2}\ge0\)nên\(\sqrt{x-2}+2>0\)
Do đó \(C=\frac{\left|\sqrt{x-2}-2\right|+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
*Với x<6 và x>2 \(\Rightarrow x-2< 4\)\(\Rightarrow\sqrt{x-2}< \sqrt{4}=2\)
\(\Rightarrow\sqrt{x-2}-2< 0\)
Cho nên \(C=\frac{2-\sqrt{x-2}+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
\(=\frac{4}{\frac{x-2}{x}}\)
\(=\frac{4x}{x-2}\)
*Với x>6 (không cho x=6 vì để C xác định)
\(\Rightarrow\sqrt{x-2}>\sqrt{4}=2\)\(\Rightarrow\sqrt{x-2}-2>0\)
Cho nên \(C=\frac{\sqrt{x-2}-2+\sqrt{x-2}+2}{1-\frac{2}{x}}\)
\(=\frac{2\sqrt{x-2}}{\frac{x-2}{x}}\)
\(=\frac{2x\sqrt{x-2}}{x-2}\)
Lưu ý là không nên để căn ở mẫu.
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
\(=1-\dfrac{2\left(4x-1\right)-\left(1-2\sqrt{x}\right)-5\sqrt{x}\cdot\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)-\left(1-2\sqrt{x}\right)\cdot\left(4x-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{4x-4x\sqrt{x}-1+\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{4x\cdot\left(1-\sqrt{x}\right)-\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{\left(4x-1\right)\cdot\left(1-\sqrt{x}\right)}{\left(1+2\sqrt{x}\right)\cdot\left(4x-1\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{-\left(\sqrt{x}-1\right)}{\left(1+2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\dfrac{4x+4\sqrt{x}+1}{\sqrt{x}-1}\)
\(=1-\dfrac{-1}{\left(1-2\sqrt{x}\right)\cdot\left(1-2\sqrt{x}\right)}\cdot\left(4x+4\sqrt{x}+1\right)\)
\(=1+\dfrac{1}{1-4x}\cdot\left(4x+4\sqrt{x}+1\right)\)
\(=1+\dfrac{4x+4\sqrt{x}+1}{1-4x}\)
\(=\dfrac{1-4x+4x+4\sqrt{x}+1}{1-4x}\)
\(=\dfrac{2+4\sqrt{x}}{1-4x}\)
ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
= \(\dfrac{x+\sqrt{x}+1}{x+1}:\left(\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)
= \(\dfrac{\left(x+\sqrt{x}+1\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
= \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1\)
= \(\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}\)
= \(\dfrac{x+2}{\sqrt{x}-1}\)