K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

=\(\dfrac{1}{3.2}+\dfrac{1}{2.5}+\dfrac{1}{5.3}+\dfrac{1}{3.7}+\dfrac{1}{7.4}+\dfrac{1}{4.9}+\dfrac{1}{9.5}\)=\(\dfrac{1}{3}+\dfrac{1}{5}\)

=\(\dfrac{8}{15}\)
30 tháng 3 2017

Gọi A = \(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{2}.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}\right)\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{1}{3}-\dfrac{1}{10}\)

\(\dfrac{1}{2}\)A = \(\dfrac{7}{30}\)

A = \(\dfrac{7}{30}:\dfrac{1}{2}\)

A = \(\dfrac{7}{15}\)

10 tháng 4 2017

A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)

A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)

A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)

A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)

10 tháng 4 2017

tớ làm hơi gọn nên có gì kho hiểu thì nói tớ

29 tháng 4 2018

\(\dfrac{1}{2}N=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

N=\(\dfrac{2}{5}:\dfrac{1}{2}=\dfrac{4}{5}\)

14 tháng 3 2017

Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)

\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)

\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)

\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)

Vậy \(A=\dfrac{-5}{12}.\)

14 tháng 3 2017

\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)

\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)

\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)

\(C=2-\dfrac{1}{2^{2016}}\)

Ta có:

\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)

\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)

\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)

\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)

\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)

\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)

\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)

    \(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)

    \(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)

    \(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)

    \(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)

    \(=\dfrac{28}{36}=\dfrac{7}{9}\)

Vậy: \(A=\dfrac{7}{9}\)

    

10 tháng 4 2018

A= \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\)

= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{6}\)

= 1 - \(\dfrac{1}{6}\)= \(\dfrac{5}{6}\)

mk chỉ bt làm câu 1 thôi ak

mong bn thông cảmthanghoa

21 tháng 7 2017

+) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)

Vậy \(A=\dfrac{2^{10}-1}{2^{10}}\)

+) \(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(\Rightarrow\dfrac{1}{2}F=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{380}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=\dfrac{1}{5}-\dfrac{1}{20}=\dfrac{3}{20}\Rightarrow F=\dfrac{3}{20}:\dfrac{1}{2}=\dfrac{3}{10}\)

Vậy \(F=\dfrac{3}{10}\)

+) \(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}=\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{25.28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

Vậy \(G=\dfrac{2}{7}\)

21 tháng 7 2017

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}=\dfrac{1024-1}{1024}=\dfrac{1023}{1024}\)

\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(=\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{380}\)

\(=\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{19.20}\)

\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=2.\dfrac{3}{20}=\dfrac{3}{10}\)

\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}\)

\(=\dfrac{4}{4.7}+\dfrac{4}{7.10}+\dfrac{4}{10.13}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

26 tháng 3 2017

3) \(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{90}\)

= \(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{90}\)

= \(\left(\dfrac{2}{3}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{90}\right)+\left(\dfrac{1}{4}+\dfrac{1}{12}\right)\)

= \(\left(\dfrac{60}{90}+\dfrac{54}{90}-\dfrac{14}{90}+\dfrac{50}{90}+\dfrac{1}{9}\right)+\left(\dfrac{4}{12}+\dfrac{1}{12}\right)\)

= \(\dfrac{151}{90}+\dfrac{1}{3}=\dfrac{151}{90}+\dfrac{30}{90}=\dfrac{181}{90}\)

26 tháng 4 2017

Ta có:

\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\)

=> \(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\right)\text{​}\)

\(=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{420}\)

\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{20.21}\)

\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{20}-\dfrac{1}{21}\)

\(=\dfrac{1}{6}-\dfrac{1}{21}\)

\(=\dfrac{5}{42}\)

Vậy \(A=\dfrac{5}{42}\)

4 tháng 5 2017

yeu

12 tháng 8 2017

\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{2}{9}\)

<=> \(\dfrac{1}{6.7:2}+\dfrac{1}{7.8:2}+\dfrac{1}{8.9:2}+...+\dfrac{1}{x\left(x+1\right):2}=\dfrac{2}{9}\)

<=> \(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

<=> \(2\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)

<=> \(2\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)

<=> \(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)

<=> \(\dfrac{1}{x+1}=\dfrac{1}{18}\)

<=> x + 1 = 18

<=> x = 17

12 tháng 8 2017

\(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x.\left(x+1\right):2}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{2}{9}.2=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{8}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{4}{9}\)\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{9}-\dfrac{1}{6}=\dfrac{5}{8}\)

\(\Leftrightarrow\left(1.8\right)=5\left(x+1\right)\)

\(\Leftrightarrow8=5x+5\)

\(\Leftrightarrow5x=8-3=5\)

\(\Leftrightarrow x=5:5\)

\(\Leftrightarrow x=1\)