K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

\(AB^2=HB.BC\)

\(AC^2=HC.BC\)

\(\Rightarrow\frac{HB}{HC}=\frac{AB^2}{AC^2}=\frac{DB^2}{DC^2}=\frac{9}{16}\)

\(\Rightarrow\frac{DB}{DC}=\frac{3}{4}\)

Mà: \(DB=75,DC=100\)

Do H nằm giữa B và D 

=> DH = DB- HB = 75 - 64 = 12 (cm)

 

17 tháng 8 2016

b ơi!

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)

20 tháng 7 2021

A B C D H 12 16

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=144+256=400\Rightarrow BC=20\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{256}{20}=12,8\)cm 

Vì AD là đường pg nên \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tunhs chất dãy tỉ số bằng nhau 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{BC}{AB+AC}=\frac{20}{28}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{5}{7}.AB=\frac{5}{7}.12=\frac{60}{7}\)cm 

=> \(HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)cm 

20 tháng 7 2021

Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)

19 tháng 6 2016

 tam giac ABC vuong tai A, phai ko bạn? 
AB^2 = BH . BC 
AC^2 = CH. BC 
=> BH/CH = AB^2/AC^2 = DB^2/ DC^2 = 9/16 => DB/DC = 3/4 mà DB + DC = BC = 63 + 112 = 175 
=> DB = 75, DC = 100 
Do H nằm giữa B và D => DH = DB - BH = 12 
ủng hộ nha!

20 tháng 6 2016

Bạn ơi giải thich giúp minh AD^2 là gì?

5 tháng 9 2021

Theo Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm 

=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm 

Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm 

=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

nên BC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Lời giải:
Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất tia phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$

$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm) 

Theo hệ thức lượng của tam giác vuông:

$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm) 

$CH=BC-HB=20-7,2=12,8$ (cm) 

$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Hình vẽ: