Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Vẽ BH vuông góc với AC
Theo định lý Pythagore, ta có:
BC2=BH2+CH2=BH2+(AC-AH)2
=BH2+AH2+AC2-2AC.AH
Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H)
và AH=1/2AB (do tam giác ABH là nửa tam giác đều)
Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)
Thay AB=28cm, AC=35cm vào (*), ta được:
BC2=1029=>BC=7\(\sqrt{21}\)cm
Vậy BC=7\(\sqrt{21}\)cm
Bài 2:
\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)
\(\Leftrightarrow2009-BC^2=980\)
hay \(BC=7\sqrt{21}\left(cm\right)\)
Vì \(\widehat{ABC}-\widehat{C}=90^O\) nên góc B là góc tù. Ta có: \(180^o-\widehat{ABH}-\widehat{C}=90^O\Rightarrow\widehat{ABH}+\widehat{C}=90^O\)=> 2 góc phụ nhau\(\Rightarrow sin\widehat{ABH}=cosC\)
\(sin\widehat{ABH}=\frac{AH}{3,14}\Rightarrow cos^2\widehat{C}=\frac{AH^2}{3,14^2}\)
\(sinC=\frac{AH}{5,37}\Rightarrow sin^2C=\frac{AH^2}{5,37^2}\)
\(\Rightarrow cos^2C+sin^2C=AH^2\left(\frac{1}{3,14^2}+\frac{1}{5,37^2}\right)\)
\(\Rightarrow1=AH^2\left(\frac{1}{3,14^2}+\frac{1}{5,37^2}\right)\Rightarrow AH\approx2,7106\)
A H B C
Độ dài đường cao AH là: 2,7106 cm
Bạn anhduc1501 trình bày cách làm rồi
Bạn xem đi nha!
Chúc bạn học tốt!