Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P = mg = 3.10=30 (N)
Biểu diễn các lực như hình vẽ
Theo điều kiện cân bằng
T → B C + N → + P → = 0 ⇒ F → + N → = 0
⇒ F → ↑ ↓ N → F = N
Xét tam giác ABC ta có
S i n α = A C B C = A C A B 2 + A C 2 = 30 30 2 + 40 2 = 3 5
C o s α = A B B C = A B A B 2 + A C 2 = 40 40 2 + 30 2 = 4 5
Theo hình biểu diễn
S i n α = P T B C ⇒ T B C = 30 3 5 = 50 ( N )
C o s α = F T B C = N T B C ⇒ N = T B C . C o s α = 50. 4 5 = 40 ( N )
Chọn đáp án A
? Lời giải:
Cách 1: Biểu diễn các lực như hình vẽ
Ta có P = mg = 3.10 = 30 (N)
Cách 2:
+ Chọn hệ quy chiếu Oxy như hình vẽ.
45 P N F dh
Chọn trục toạ độ như hình vẽ.
Vật ở VTCB lò xo bị nén \(\Delta \ell_0\)
Vật đang đứng yên ở VTCB, hợp lực tác dụng lên vật bằng 0
\(\Rightarrow \vec{P}+\vec{F_{dh}}+\vec{N}=\vec{0}\)
Chiếu lên trục toạ độ ta được: \(P.\sin 45^0-F_{dh}=0\)
\(\Rightarrow mg.\sin 45^0=k.\Delta \ell_0\)
\(\Rightarrow k=\dfrac{mg.\sin 45^0}{\Delta \ell_0}=\dfrac{0,2.10.\sin 45^0}{0,02}=50\sqrt 2(N/m)\)
Chọn C.
Ta có :
Trọng lực của thanh đặt ở trung điểm thanh (gọi G là trung điểm thanh AB)
Ta giải bài toán trong trường hợp tổng,
Áp dụng quy tắc momen trục quay tại B:
\(mg.BGsin\alpha=F.BA\)
\(\rightarrow F=mg\frac{BGsin\alpha}{BA}=50.10\frac{sin\alpha}{2}=250sin\alpha\)
Phản lực của tường phải cân bằng với F và P.
Phản lực theo phương ngang: \(N_x=F.sin\alpha\)
Phản lực theo phương thẳng đứng:\(N_y=mg-F.cos\alpha\)
Gọi góc hợp giữa phản lực và phương ngang là \(\phi\)
\(tan\phi=\frac{Ny}{Nx}=\frac{mg-Fcos\alpha}{Fsin\alpha}\)
\(=\frac{500-250sin\alpha.cosalpha}{250sinalpha^2}=\frac{2-sin\alpha.cosalpha}{sinalpha^2}\)
Độ lớn của phản lực:
\(N=\sqrt{N_x^2+N^2_y}=\sqrt{F^2+m^2g^2-2mgFcosalpha}\)
Trong 2 trường hợp góc α này chúng ta thay số và tìm các giá trị cần tìm
Đáp án D