Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
L = L 1 , i cùng pha u => cộng hưởng
L = L 2 , Ul max
Để ý thấy L 2 = 2 L 1 . Thay R = 50 vào, ta có hệ:
Từ đó dễ dàng tìm được f = 25(Hz).
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm hay ZL=2ZC =2.100=200 → L=2/π ( D)
Sử dụng hình vẽ suy luận cho nhanh : R ZL ZC UAm Um
Khi L = L 1 thì dòng điện cùng pha với điện áp → hiện tượng cộng hưởng → Z C = Z L 1 = 2 π f L 1 .
Khi L = L 2 xảy ra cực đại điện áp hiệu dụng trên cuộn dây Z L 2 = R 2 + Z C 2 Z C ⇔ 2 π f L 2 = 50 2 + 2 π f L 1 2 2 π f L 1 → f = 25 Hz.
Đáp án A
\(U_c=IZ_c=\frac{U}{Z}.Z_c=\frac{U}{\sqrt{R^2+\left(Z_L-Z_C\right)^2}}.Z_c\)
\(=\frac{U}{\sqrt{R^2+Z_L^2}-2Z_LZ_C+Z_C^2}.Z_C=\frac{U}{\sqrt{1-\frac{2Z_L}{Z_C}+\frac{R^2+Z_L^2}{Z_C^2}}}\)
Đặt \(x=\frac{1}{Z_C}\) thì ta thu được hàm của Uc(x)
\(U_c=\frac{U}{\sqrt{\left(R^2+Z_L^2\right)x^2-2Z_Lx+1}}\)
Tìm x để Uc Max khi Mẫu min và khi \(x=-\frac{b}{2a}=\frac{2Z_L}{2.\left(R^2+Z_L^2\right)}=\frac{Z_L}{R^2+Z_{L^2}}\)
=> \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\)
và Ucmax = \(U.\frac{\sqrt{R^2+Z_L^2}}{R}.\)
Bạn thay số và thu được kết quả
Đáp án A
L = L1, i cùng pha u => cộng hưởng ⇒ Z L 1 = Z C
L = L2, UL max ⇒ Z L 2 = R 2 + Z C 2 Z C
Để ý thấy L2 = 2L1. Thay R = 50 vào, ta có hệ: Z L 2 = 50 2 + Z C 2 Z C Z L 1 = Z C Z L 2 = 2 Z L 1 ⇔ Z L 1 = 50 Z L 2 = 100 Z C = 50 3
Từ đó dễ dàng tìm được f = 25(Hz).