Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có
Z C 1 = 400 Ω , Z C 2 = 200 Ω
⇒ Z L - Z C 1 2 = Z L - Z C 2 2
⇒ Z L = ( Z C 1 + Z C 2 )/2 = 300 Ω
L = Z L / ω = 3/ π (H)
Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm hay ZL=2ZC =2.100=200 → L=2/π ( D)
Sử dụng hình vẽ suy luận cho nhanh : R ZL ZC UAm Um
\(Z_{C1}=\frac{1}{100\pi.\frac{10^{-4}}{4\pi}}=400\Omega\)
\(Z_{C2}=\frac{1}{100\pi.\frac{10^{-4}}{2\pi}}=200\Omega\)
Khi C thay đổi để P1 = P1 suy ra I1 = I2 => Z1 = Z2
\(\Rightarrow\sqrt{R^2+\left(Z_L-Z_{C1}\right)^2}=\sqrt{R^2+\left(Z_L-Z_{C2}\right)^2}\)
\(\Rightarrow Z_L-Z_{C1}=Z_{C2}-Z_L\)
\(\Rightarrow Z_L=\frac{Z_{C1}+Z_{C2}}{2}=300\Omega\)
\(\Rightarrow L=\frac{3}{\pi}\)
Đáp án C.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Đáp án B
Dung kháng của mạch trong hai trường hợp
+ Hai giá trị của ZC cho cùng công suất tiêu thụ trên mạch