Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{hc}{\lambda}=A+\frac{1}{2}mv^2_{0max}\left(\text{∗}\right)\)
+Khi chiếu bức xạ có \(\lambda_1:v_{0max1}=\sqrt{\frac{2\left(\frac{hc}{\lambda_1}-A\right)}{m}}\left(1\right)\)
+Khi chiếu bức xạ có \(\lambda_2:v_{0max2}=\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\left(2\right)\)
Từ \(\text{(∗)}\) ta thấy lhi \(\lambda\) lớn thì \(v_{0max}\) nhỏ
\(\Rightarrow v_{0max1}=2,5v_{0max2}\left(\lambda_1<\lambda_2\right)\)
\(\Leftrightarrow\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}=2,5\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\)
\(\Leftrightarrow\frac{hc}{\lambda_1}-A=6,25\left(\frac{hc}{\lambda_2}-A\right)\) với \(A=\frac{hc}{\lambda_0}\)
\(\Rightarrow\lambda_0=\frac{5,25\lambda_1\lambda_2}{6,25\lambda_1-\lambda_2}=\frac{5,25.0,4.0,6}{6,25.0,4-0.6}=0,663\mu m\)
Nhiệt lượng miếng kim loại tỏa ra:
Q1 = m1 . c1 . (t1 – t) = 0,4 . c . (100 – 20)
Nhiệt lượng nước thu vào:
Q2 = m2 . c2 . (t – t2) = 0,5 . 4190 . (20 – 13)
Nhiệt lượng tỏa ra bằng nhiệt lượng thu vào:
Q1 = Q2
0,4 . c . (100 – 20) = 0,5 . 4190 . (20 – 13)
C = 458 J/kg.K
Kim loại này là thép.
Đáp án là C. Tia gamma
Tia gamma là tia có bước sóng ngắn hơn cả tia X (tia Rơn-ghen). Bước sóng nhỏ hơn 100 pm (picomet), tức tần số lớn hơn \(10^{10}\) là tia gamma. Tia này có năng lượng rất cao, có khả năng xuyên qua vài cm chì đặc.
Tổng trở của mạch: \(Z=\frac{U}{I}=\frac{240}{\sqrt{3}}=80\sqrt{3}\left(\Omega\right)\)
\(Z_{MB}=\frac{80\sqrt{3}}{\sqrt{3}}=80\Omega\)
Ta có giản đồ véc tơ theo Z như sau:
i R Z Z Z r Z C AN L MB Z 80 80 80√3 80√2 45° 45° O
Từ giản đồ véc tơ ta có: \(Z_{AN}=80\sqrt{2}\)
Suy ra \(Z_C=80\)
Suy ra tam giác \(ORZ_{AN}\) vuông cân
\(\Rightarrow Z_LZ_{AN}Z_{MB}\) cũng vuông câ
\(\Rightarrow Z_L=80\cos45^0=40\sqrt{2}\)
Từ đó suy ra L
Độ lệch pha giữa hai dao động là ∆φ = 0,75π – 0,5π = 0,25π rad.
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
Mình nghĩ là đáp án a chứ bạn,vì đồng biến hay nghịch biến tức là ta xét đến việc cùng tăng hay cùng giảm giá trị chứ không phải cùng hay trái dấu đâu
Theo định luật II Newton: \(\vec{a}=\dfrac{\vec{F}}{m}\)
Về độ lớn: \(a=\dfrac{F}{m}\)
Như vậy, a tỉ lệ thuận với F, và quan hệ là đồng biến.
Đáp án A
Giới hạn quang điện được xác định bởi biểu thức