Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Công thoát của êlectron ra khỏi bề mặt catôt
\(A=\frac{hc}{\lambda_0}=3,025.10^{-19}J\)
2) Vận tốc ban cực đại của electron
\(V_{max}=\sqrt{\frac{2hc}{m}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)}=5,6.10^5m\text{/}s\)
3) Hiệu điện thế hãm để không có electron về catôt.
\(v_h=\frac{hc}{e}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)=0,91V\)
Dòng điện xoay chiều khiến cho dây chịu tác dụng của lực từ, và sẽ dao động theo phương vuông góc với đường sức từ, với tần số 50Hz, hay ω=2πf=100πω=2πf=100π và T=0.02sT=0.02s
Khoảng cách giữa 2 điểm dừng (ứng với 1 bụng sóng) là λ/2=vT/2=12×0.02/2=0.12λ/2=vT/2=12×0.02/2=0.12
Có 6 bụng sóng, vậy thì chiều dài sợi dây là: 6λ2=0.12×6=0.72(m)6λ2=0.12×6=0.72(m)
Đáp án là A. 72cm
Ta có : ADCT : \(I_0=U_0\sqrt{\frac{C}{L}}\) ( Từ công thức tính năng lượng điện từ trong mạch \(W=W_{Cmax}=W_{Lmax}\)
Nghĩa là :\(\frac{L.\left(I_0\right)^2}{2}=\frac{C.\left(U_0\right)^2}{2}\))
\(\Rightarrow I_0=5.\sqrt{\frac{8.10^{-9}}{2.10^{-4}}}=\text{0.0316227766}\left(A\right)\)\(\Rightarrow I=\frac{I_0}{\sqrt{2}}=\text{0.022360677977}\left(A\right)\)
Mà \(P=r.I^2\Rightarrow r=\frac{6.10^{-3}}{5.10^{-4}}=12\left(\Omega\right)\Rightarrow D\)
Ta có: \(\frac{hc}{\lambda}=A+\frac{1}{2}mv^2_{0max}\left(\text{∗}\right)\)
+Khi chiếu bức xạ có \(\lambda_1:v_{0max1}=\sqrt{\frac{2\left(\frac{hc}{\lambda_1}-A\right)}{m}}\left(1\right)\)
+Khi chiếu bức xạ có \(\lambda_2:v_{0max2}=\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\left(2\right)\)
Từ \(\text{(∗)}\) ta thấy lhi \(\lambda\) lớn thì \(v_{0max}\) nhỏ
\(\Rightarrow v_{0max1}=2,5v_{0max2}\left(\lambda_1<\lambda_2\right)\)
\(\Leftrightarrow\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}=2,5\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\)
\(\Leftrightarrow\frac{hc}{\lambda_1}-A=6,25\left(\frac{hc}{\lambda_2}-A\right)\) với \(A=\frac{hc}{\lambda_0}\)
\(\Rightarrow\lambda_0=\frac{5,25\lambda_1\lambda_2}{6,25\lambda_1-\lambda_2}=\frac{5,25.0,4.0,6}{6,25.0,4-0.6}=0,663\mu m\)
Dung kháng của tụ là \({Z_C} = \dfrac{1}{{\omega C}} = \dfrac{1}{{100\pi .\dfrac{{{{10}^{ - 4}}}}{\pi }}} = 100\Omega \).
- Khối lượng nước bị bay hơi mà không ngưng tụ lại trên nước đá là: \(\Delta m = m_0+m-m_1\)
- Nhiệt lượng cần cung cấp để làm lượng nước trên bay hơi là: \(Q_1=\Delta m. L=(m_0+m-m_1).L\)
- Nhiệt lượng cần cung cấp để làm tan đá là: \(Q_2=m.\lambda\)
- Nhiệt lượng cần cung cấp để m gam nước tăng nhiệt đến nhiệt độ sôi là: \(Q_3=m.c.t_s\)
Vậy nhiệt lượng mà bếp cung cấp cho bình nước là: \(Q=Q_1+Q_2+Q_3=(m_0+m-m_1).L+m.\lambda+m.c.t_s\)
Toàn bộ năng lượng đến trong 1s là:
\(E_1=N_1\frac{hc}{\lambda_1}\)
Năng lượng hạt phát ra trong 1s là :
\(E_2=N_2\frac{hc}{\lambda_2}\)
mặt khác ta có
\(E_2=H.E_1\)
\(N_2\frac{hc}{\lambda_2}=HN_1\frac{hc}{\lambda_1}\)
\(\frac{N_2}{\lambda_2}=H\frac{N_1}{\lambda_1}\)
\(N_2=H\frac{N_1\lambda_2}{\lambda_1}=2.4144.10^{13}hạt\)
Mình nghĩ là đáp án a chứ bạn,vì đồng biến hay nghịch biến tức là ta xét đến việc cùng tăng hay cùng giảm giá trị chứ không phải cùng hay trái dấu đâu
Theo định luật II Newton: \(\vec{a}=\dfrac{\vec{F}}{m}\)
Về độ lớn: \(a=\dfrac{F}{m}\)
Như vậy, a tỉ lệ thuận với F, và quan hệ là đồng biến.
Ta có I = 5 A; ${Z_L} = \omega L = 100\pi .0,4 = 40\Omega .$
→ ${U_L} = I{Z_L}$ = 5.40 = 200 V.
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
Đáp án A
Giới hạn quang điện của đồng được xác định bởi biểu thức: