Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Lời giải.
Giả sử hộp thứ nhất có x viên bi, trong đó có a viên bi đen;
hộp thứ hai có y viên bi, trong đó có b viên bi đen
Điều kiện: x , y , a , b là các số nguyên dương và
Theo giả thiết, ta có
Từ ( 2 ) ⇔ 55 x y = 84 a b
suy ra xy chia hết cho 84
Mặt khác, ta có
nên xy = 84 (3)
Từ (1) và (3), ta được x = 14 y = 6
Từ (3) và (2), suy ra ab = 55 nên a là ước của 55
Lại có 55 6 ≤ 55 b = a ≤ 14 nên a = 11
Với a= 11, ta được b = 5
Vậy xác suất để được 2 bi trắng là
Chọn A
Lời giải
Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi
Số phần tử của không gian mẫu là Ω = C 15 1 . C 18 1
Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"
Ta có các kết quả thuận lợi cho biến cố X như sau
● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1 cách
● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có C 5 1 . C 6 1 cách
● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có C 6 1 . C 5 1 cách
Suy ra số phần tử của biến cố
Vậy xác suất cần tính
P ( X ) = Ω x Ω = 44 135
Gọi X là biến cố: “lấy được cả hai viên bi mang số chẵn. “
Gọi A là biến cố: “lấy được viên bi mang số chẵn ở hộp I “
=> P A = C 4 1 C 9 1 = 4 9 . ( hộp 1 có 4 viên bi chẵn)
Gọi B là biến cố: “lấy được viên bi mang số chẵn ở hộp II “ P B = 3 10
Ta thấy biến cố A, B là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P ( X ) = P ( A ) . P ( B ) = 4 9 . 3 10 = 2 15
Chọn đáp án A
Gọi X là biến cố: “lấy được cả hai viên bi mang số chẵn. “
Gọi A là biến cố: “lấy được viên bi mang số chẵn ở hộp I”. Vì hộp 1 có 4 bi chẵn nên
=> P A = C 4 1 C 9 1 = 4 9 .
Gọi B là biến cố: “lấy được viên bi mang số chẵn ở hộp II”: P B = 3 10 .
Ta thấy biến cố A, B là 2 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P X = P A . B = P A . P B = 4 9 . 3 10 = 2 15 .
Chọn đáp án A.
Không gian mẫu: \(C_{20}^5\)
a. Số biến cố thuận lợi: \(C_{12}^3.C_8^2\)
Xác suất: \(P=\dfrac{C_{12}^3.C_8^2}{C_{20}^5}=...\)
b. Các trường hợp thỏa mãn: (0 trắng, 5 đen), (1 trắng, 4 đen), (2 trắng, 3 đen)
\(\Rightarrow C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3\)
Xác suất: \(P=\dfrac{C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3}{C_{20}^5}=...\)
\(n\left(\Omega\right)=C^2_{13}\cdot C^2_{13}\)
\(n\left(A\right)=C^2_7\cdot C^2_{13}+C^2_6\cdot C^2_{13}+C^2_5\cdot C^2_{13}+C^2_8\cdot C^2_{13}\)
=>P(A)=5772/6084=37/39
Không gian mẫu: \(C_9^1.C_8^1=72\)
a. Lấy được 2 bi trắng khi bi lấy ra từ cả 2 hộp đều trắng
Số biến cố thuận lợi: \(C_5^1.C_6^1=30\)
Xác suất: \(P=\dfrac{30}{72}=...\)
b. Số cách lấy cả 2 có ít nhất 1 vàng: \(72-30=42\)
Xác suất: \(P=\dfrac{42}{72}=...\)
Không gian mẫu: \(C_{14}^5\)
Số cách để lấy 5 viên bi có đúng 1 màu: \(C_6^5+C_8^5\)
Số cách để lấy bi có đủ 2 màu: \(C_{14}^5-C_6^5-C_8^5\)
Xác suất: \(P=\dfrac{C_{14}^5-C_6^5-C_8^5}{C_{14}^5}\)
Chọn D
Giả sử hộp 1 có viên bi, trong đó có a viên bi đen.
Hộp 2 có y viên bi, trong đó có b viên bi đen.
x, y, a, b là những số nguyên dương, )
Từ giả thiết x + y = 20,
Từ đó ta có xy chia hết cho 84
Mặt khác suy ra xy = 84 ta được x = 14, y = 6
Thay vào (1) ta được ab = 55 nên a là ước của 55. Do a ≤ 14 nên a = 11 suy ra b = 5.
Vậy xác suất để lấy được 2 bi trắng