K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

a. Sau 1 chu kì bán rã: Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Sau 2 chu kì bán rã: Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Sau 3 chu kì bán rã: Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Tổng quát : Sau n chu kì bán rã : Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

c. Chất phóng xạ không còn độc hại nữa khi khối lượng chất phóng xạ còn lại < 10-6 g = 10-9 kg

Giải bài 1 trang 121 sgk Đại Số 11 | Để học tốt Toán 11

Vậy sau 30 chu kì = 30.24000 = 720 000 năm thì 1kg chất phóng xạ này không còn độc hại nữa.

4 tháng 4 2017

a) Nhận xét: u1 = ; u2 = ; u3 = ; ... un = .

Điều này chứng minh đơn giản bằng quy nạp.

b) lim un = lim ()n= 0 = vì lim qn = 0 nếu |q| < 1.

c) Đổi 10-6 g = . kg = kg.

Muốn có un = < , ta cần chọn n0 sao cho 2n0 > 109. Chẳng hạn, với n0 = 36, thì

236 = (24)9 = 16 9 > 109. Nói cách khác, sau chu kì thứ 36 (nghĩa là sau 36.24000 = 864 000 (năm), chúng ta không còn lo lắng về sự độc hại của khối lượng chất phóng xạ còn lại.



Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T= 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã).(Nguồn: Đại số và Giải tích 11, NXBGD Việt Nam, 2021)Gọi \({u_n}\) là khối lượng chất phóng xạ còn lại sau chu kì thứ n. a) Tìm số hạng tổng quát \({u_n}\) của...
Đọc tiếp

Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T= 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (T được gọi là chu kì bán rã).

(Nguồn: Đại số và Giải tích 11, NXBGD Việt Nam, 2021)

Gọi \({u_n}\) là khối lượng chất phóng xạ còn lại sau chu kì thứ n. 

a) Tìm số hạng tổng quát \({u_n}\) của dãy số \(\left( {{u_n}} \right)\). 

b) Chứng minh rằng \(\left( {{u_n}} \right)\) có giới hạn là 0.

c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, biết rằng chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn \({10^{ - 6}}\) g. 

1
HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Sau một chu kì bán rã \({u_1} = 1.\frac{1}{2} = \frac{1}{2}\left( {kg} \right)\)

Sau hai chu kì bán rã \({u_2} = \frac{1}{2}.{u_1} = \frac{1}{{{2^2}}}\left( {kg} \right)\)

Vậy sau n chu kì bán rã \({u_n} = \frac{1}{{{2^n}}}\)

b) \(\lim {u_n} = \lim \frac{1}{{{2^n}}} = \lim {\left( {\frac{1}{2}} \right)^n} = 0\)

c) Đổi \({10^{ - 6}}g = {10^{ - 9}}kg\)

Vì chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn \({10^{ - 6}}\) g nên ta có

\({u_n} < {10^{ - 9}} \Leftrightarrow \frac{1}{{{2^n}}} < {10^{ - 9}} \Leftrightarrow {2^n} > {10^9} \Leftrightarrow n > {\log _2}{10^9} \approx 29,9\)

Vậy sau 30 chu kì là 30.24 000 = 720 000 năm thì khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

a, Khối lượng polonium-210 còn lại sau 2 năm là:

\(M\left(730\right)=100\cdot\left(\dfrac{1}{2}\right)^{\dfrac{730}{138}}\approx1,92\left(g\right)\)

b, Ta có: 

\(M\left(t\right)=40\\ \Leftrightarrow40=100\cdot\left(\dfrac{1}{2}\right)^{\dfrac{t}{138}}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{\dfrac{t}{138}}=\dfrac{4}{10}\\ \Leftrightarrow\dfrac{t}{138}=log_{\dfrac{1}{2}}\left(\dfrac{4}{10}\right)\\ \Leftrightarrow t=138\cdot log_{\dfrac{1}{2}}\left(\dfrac{4}{10}\right)\approx182,43\)

Vậy sau 183,43 ngày thì còn lại 40g polonium-210.

a: Khối lượng của vật thời điểm t=0 là: \(m\left(0\right)=13\cdot e^{-0.015\cdot0}=13\left(kg\right)\)

b: Sau 45 ngày khối lượng còn lại là;

\(m\left(45\right)=13\cdot e^{-0.015\cdot45}\simeq6,62\left(kg\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với \({M_0} = 200,T = 9,M\left( t \right) = 100\) ta có:

\(100 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{2} \Leftrightarrow \frac{t}{9} = 1 \Leftrightarrow t = 9\)

Vậy sau 9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 100 g.

b) Với \({M_0} = 200,T = 9,M\left( t \right) = 50\) ta có:

\(50 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{4} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = {\left( {\frac{1}{2}} \right)^2} \Leftrightarrow \frac{t}{9} = 2 \Leftrightarrow t = 18\)

Vậy sau 18 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

c) Với \({M_0} = 200,T = 9,M\left( t \right) = 20\) ta có:

\(20 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _{\frac{1}{2}}}\frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _2}10 \Leftrightarrow t = 9{\log _2}10 \approx 29,9\)

Vậy sau 29,9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

Ta có: \(\dfrac{H}{H_0}=86\%=\dfrac{43}{50}=e^{-\lambda t}\\ \Rightarrow e^{-\dfrac{ln2}{5730}\cdot t}=\dfrac{43}{50}\\ \Rightarrow t\simeq1246,8\left(năm\right)\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Dãy số chỉ khối lượng còn lại của 20 gam poloni 210 sau \(n\) chu kì là một cấp số nhân có số hạng đầu \({u_1} = 20\) và công bội \(q = \frac{1}{2}\).

a) Sau 690 ngày thì số chu kì bán rã thực hiện được là: \(690:138 = 5\) (chu kì).

Vậy khối lượng còn lại của 20 gam poloni 210 là: \({u_5} = {u_1}.{q^4} = 20.{\left( {\frac{1}{2}} \right)^4} = 1,25\) (gam).

b) Sau 7314 ngày thì số chu kì bán rã thực hiện được là: \(7314:138 = 53\) (chu kì).

Vậy khối lượng còn lại của 20 gam poloni 210 là: \({u_{53}} = {u_1}.{q^{52}} = 20.{\left( {\frac{1}{2}} \right)^{52}} \approx 44,{4.10^{ - 16}}\) (gam).

Giải giúp em vài bài toán chuyên đề lượng giác 11 với ạ!! 1) Tìm GTLN, GTNN của y=\(\sqrt{sinx}-\sqrt{cosx}\) 2) Tìm tập giá trị của hàm số y= tan2x + cot2x 3) Tìm tập hợp T các giá trị thực cùa tham số m để hàm số y= mtanx +2 tăng trong khoảng (0;\(\frac{\Pi}{2}\)) 4) Tìm tập giá trị của hàm số y=\(|tanx+cotx|\) 5) Một chất điểm dao động điều hòa quanh vị trí cân bằng với phương trình dao động...
Đọc tiếp

Giải giúp em vài bài toán chuyên đề lượng giác 11 với ạ!!

1) Tìm GTLN, GTNN của y=\(\sqrt{sinx}-\sqrt{cosx}\)

2) Tìm tập giá trị của hàm số y= tan2x + cot2x

3) Tìm tập hợp T các giá trị thực cùa tham số m để hàm số y= mtanx +2 tăng trong khoảng (0;\(\frac{\Pi}{2}\))

4) Tìm tập giá trị của hàm số y=\(|tanx+cotx|\)

5) Một chất điểm dao động điều hòa quanh vị trí cân bằng với phương trình dao động được cho bởi x=100sin(\(\frac{\Pi}{3}t\))cm, trong đó thời gian t tính bằng giây. Ở giây thứ 5 kể từ lúc bắt đầu dao động, chất điểm cách vị trí cân bằng bao nhiêu?

6) Một đường đua ô tô dạng đường tròn có bán kính 1km. Trên đường đua người ta đặt 3 trạm tiếp nhiên liệu cách đều nhau. Khoảng cách giữa các trạm tiếp nhiên liệu là bao nhiêu (kết quả làm tròn đến hàng phần nghìn)?

2
NV
19 tháng 5 2019

Câu 1:

\(\left\{{}\begin{matrix}\sqrt{sinx}\le1\\\sqrt{cosx}\ge0\end{matrix}\right.\) \(\Rightarrow y=\sqrt{sinx}-\sqrt{cosx}\le1-0=1\)

\(\Rightarrow y_{max}=1\) khi \(x=\frac{\pi}{2}+k2\pi\)

\(\left\{{}\begin{matrix}\sqrt{sinx}\ge0\\\sqrt{cosx}\le1\end{matrix}\right.\) \(\Rightarrow y=\sqrt{sinx}-\sqrt{cosx}\ge0-1=-1\)

\(\Rightarrow y_{min}=-1\) khi \(x=k2\pi\)

Câu 2:

- Nếu \(tan2x>0\Rightarrow cot2x>0\Rightarrow y\ge2\sqrt{tan2x.cot2x}=2\)

- Nếu \(tan2x< 0\Rightarrow cot2x< 0\Rightarrow y=-\left(\left|tan2x\right|+\left|cot2x\right|\right)\le-2\sqrt{\left|tan2x\right|.\left|cot2x\right|}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}y\ge2\\y\le-2\end{matrix}\right.\)

Câu 3:

Do \(tanx\) là hàm tăng nên để \(y=mtanx+2\) là hàm tăng thì \(m>0\)

NV
19 tháng 5 2019

Câu 4:

Ta thấy \(y\ge0\)

\(y^2=\left(tanx+cotx\right)^2=tan^2x+cot^2x+2\ge2tanx.cotx+2=4\)

\(\Rightarrow\left|y\right|\ge2\)

\(y\ge0\Rightarrow y\ge2\)

Câu 5:

Tọa độ của chất điểm ở giây thứ 5:

\(x=100sin\left(\frac{5\pi}{3}\right)=-50\sqrt{3}\) (cm)

Vậy chất điểm nằm cách vị trí cân bằng \(50\sqrt{3}\) (cm) về phía chiều âm

Câu 6:

Chu vi đường đua:

\(C=2\pi R=2\pi\) (km)

Khoảng cách giữa các trạm (tính theo độ dài cung tròn, không phải theo đường chim bay):

\(\frac{2\pi}{3}\) (km) \(\approx2,094\left(km\right)\)

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây : - Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1)  - Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo...
Đọc tiếp

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây :

- Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1) 

- Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo cách trên, kí hiệu là (2) (H2)

- Bước 3 : Với 4 tam giác vuông cân mầu trắng như trong hình 2, ta lại tạo được 4 hình vuông với mầu xám theo cách trên (H3)

- ..........

- Bước n : Ở bước này ta có \(2^{n-1}\) hình vuông với mầu sám được tạo thành theo cách trên, kí hiệu là (n)

a) Gọi \(u_n\) là tổng diện tích của tất cả các hình vuông mới được tạo thành ở bước thứ n.

Chứng minh rằng :

               \(u_n=\dfrac{1}{2^{n+1}}\)

b) Gọi \(S_n\) là tổng diện tích của tất cả các hình vuông mầu xám có được sau n bước. Quan sát hình vẽ để dự đoán giới hạn của \(S_n\) khi \(n\rightarrow+\infty\). Chứng minh dự đoán đó ?

1