Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.ap dung dinh ly pytago hoac ap dung quan he giua goc va canh
Ta có:
A B C
Ta có công thức tính cạnh huyền:
\(AB^2+AC^2=BC^2\left(đlpg\right)\)
Mà \(AB\)và \(AC\)đều là cạnh góc vuông.
\(\Rightarrow AB\left(AC\right)< BC\)
Vậy trong một tam giác vuông cạnh góc vuông luôn nhỏ hơn cạnh huyền.
Trong tam giác thì tổng 3 góc phải bằng 180
=> Tam giác vuông thì tổng 3 góc = 90 + x + y = 180 => x + y = 90
Vì x, y luôn dương
=> x, y nhỏ hơn 90
=> Góc vuông là góc có số đo góc lớn nhất
=> Cạnh đối diện với góc vuông có số đo độ dài lớn nhất
Vì cạnh huyền đối diện với góc vuông
Nên cạnh huyền là lớn nhất
Vậy cạnh góc vuông nhỏ hơn cạnh huyền
. Góc đối diện với cạnh huyền là 90 độ
2 góc còn lại luôn nhỏ hơn 90 độ ( do tổng 3 góc = 180 độ ) => góc đối diện với cạnh góc vuông < 90 độ
=> góc đối diện với cạnh góc vuông < góc đối diện với cạnh huyền => cạnh góc vuông < cạnh huyền (do mối quan hệ giữa cạnh và góc)
#)Giải :
Trong 1 tam giác vuông, góc vuông là góc lớn nhất ( = 90o)
=> Hai góc còn lại là góc nhọn và = 45o
Vì góc vuông luôn đối diện với cạnh huyền => Cạnh huyền là cạnh lớn nhất ( theo đ/lí 1 quan hệ giữa góc và cạnh đối diện của một tam giác )
Hai góc còn lại đối diện với hai cạnh góc vuông => Cạnh góc vuông bé hơn cạnh huyền ( theo tính của quan hệ giữa góc và cạnh đối diện của một tam giác )
hình chỉ tương đối để bạn dễ hình dung thôi
A B C D
Trên tia đối của tia AB lấy điểm D sao cho AD = AB
tam giác ABC vuông tại A => AC _|_ AB (đn)
=> AC _|_ BD
=> góc CAD = góc CAB = 90 (đn)
xét tam giác CAD và tam giác CAB có : AC chung
AD = AB (Cách vẽ)
=> tam giác CAD = tam giác CAB (ch - cgv)
=> AD = AB (đn)
AB = AD => DB = 2AB
AB = 1/2BC (gt) => BC = 2AB
=> DB = CB = DC
=> tam giác CDB đều (đn)
=> góc CBD = 60 (tc)
tam giác ABC có góc A + góc B + góc C = 180
góc A = 90
=> góc C = 30
sao mà khổ vậy
mẹ em là giáo viên toán mà em không hỏi lại chui lên đây hỏi
chị chịu em luôn
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Trong tam giác vuông, góc vuông là góc lớn nhất nên cạnh huyền (đối diện với góc vuông) là cạnh lớn nhất.