Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 113 nâng cao và các chuyên đề toán 8 đại số (Vũ Dương Thụy -Nguyễn Ngọc Đạm)
a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
a)Để B thuộc Z
=>5 chia hết n-3
=>n-3 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {4;2;8;-2}
Ta có: \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}=\frac{\left(4n^4+4n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+1\right)-4n^2}{4}=\frac{\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)}{4}\)
Thế vô A ta được
\(A=\frac{\frac{5.1}{4}.\frac{25.13}{4}.\frac{61.41}{4}...\frac{1741.1625}{4}}{\frac{13.5}{4}.\frac{41.25}{4}.\frac{85.61}{4}...\frac{1861.1741}{4}}=\frac{1}{1861}\)
\(M=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(M=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(M=\left[x\left(x+5\right)+2\left(x+5\right)\right]\left[x\left(x+4\right)+3\left(x+4\right)\right]-24\)
\(M=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)
\(M=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(M=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-24\)
\(M=\left(x^2+7x+11\right)^2-1-24\)
\(M=\left(x^2+7x+11\right)^2-25\)
\(M=\left(x^2+7x+11+5\right)\left(x^2+7x+11-5\right)\)
\(M=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
Xét tử \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3abc-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(\Rightarrow A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c=2009\)
Ta có
\(DPCM\) ?