Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{ x2 - [ 62 - ( 82 - 9.7)3 - 7.5]3 - 5.3 }3 = 1
{ x2 + [ 36 - (64 - 63)3 - 35]3 - 15}3 = 1
[ x2 - ( 36 - 13 - 35 ) - 15 ]3 = 1
[ x2 - ( 36 - 1 - 35 ) - 15]3 = 1
[ x2 - ( 35 - 35 ) - 15]3 = 1
[ x2 - 0 - 15]3 = 1
( x2 - 15 )3 = 1
<=> ( x2 - 15)3 = 13
=> x2 - 15 = 1
<=> x2 = 16
=> x = 4
\(Q=1+3+3^2+3^3+3^4+...+3^{11}\)
\(3Q=3+3^2+3^3+3^4+3^5+...+3^{12}\)
\(3Q-Q=\left(3+3^2+3^3+3^4+3^5+...+3^{12}\right)-\left(1+3+3^2+3^3+3^4+...+3^{11}\right)\)
\(2Q=3^{12}-1\)
\(Q=\frac{3^{12}-1}{2}\)
Chứng minh rằng \(D=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}< \frac{1}{16}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)
\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)
\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)
\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)
\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)
\(\Leftrightarrow4A< B< \frac{1}{4}\)
\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)